首页> 外文期刊>Sequential analysis >Positivity of cumulative sums for multi-index function components explains the lower bound formula in the Levin-Robbins-Leu family of sequential subset selection procedures
【24h】

Positivity of cumulative sums for multi-index function components explains the lower bound formula in the Levin-Robbins-Leu family of sequential subset selection procedures

机译:多索引函数组件的累积总和的阳性解释了莱文 - 罗宾斯-Leu系列的下界公式的顺序子集选择程序

获取原文
获取原文并翻译 | 示例

摘要

We exhibit some strong positivity properties of a certain function that implies a key inequality that in turn implies the lower bound formula for the probability of correct selection in the Levin-Robbins-Leu family of sequential subset selection procedures for binary outcomes. These properties provide a more direct and comprehensive demonstration of the key inequality than was discussed in Levin and Leu (2013a).
机译:我们表现​​出一些具有某种功能的强大阳性特性,这些特性暗示了一个关键不等式,又依然意味着莱文 - 罗宾斯 - ·雷族的正确选择概率的下界公式,用于二进制结果的顺序子集选择程序。这些属性提供了比莱文和黎努(2013A)讨论的关键不平等的更直接和全面的展示。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号