首页> 外文期刊>Sequential analysis >A pointwise limit theorem for counting processes of perturbed random walks with an application to repeated significance tests
【24h】

A pointwise limit theorem for counting processes of perturbed random walks with an application to repeated significance tests

机译:逐点极限定理用于扰动随机游动的计数过程及其在重复显着性检验中的应用

获取原文
获取原文并翻译 | 示例

摘要

Hsu and Robbins (1947) introduced the concept of complete conver-gence as a complement to the Kolmogorov strong law in that they proved that Sigma(infinity)(n=1) P(|Sn| > n epsilon) < infinity provided the mean of the summands is zero and that the variance is finite. Later, Erdos proved the necessity (1949, 1950). Heyde (1975) proved that, under the same conditions, lim(epsilon)SE arrow 0 epsilon(2) Sigma(infinity)(n=1) P(|Sn| > n epsilon) = EX2, thereby opening an area of research that has been called precise asymptotics. Both results above have been extended and generalized in various directions. Kao (1978) proved a pointwise version of Heyde's result, viz. for the counting process N(epsilon) = Sigma(infinity)(n=1) 1{|Sn| > n epsilon}, he showed that lim(epsilon)SE arrow 0 epsilon N-2 (epsilon) ->(d) EX2 integral(infinity)(0) 1 {|W(u)| > u} du, where W(.) is the standard Wiener process. In this article, we prove an analog for perturbed random walks and illustrate how they enter naturally within the theory of repeated significance tests in exponential families.
机译:Hsu和Robbins(1947)引入了完全收敛的概念,作为对Kolmogorov强定律的补充,因为他们证明了Sigma(infinity)(n = 1)P(| Sn |> n epsilon) n epsilon)= EX2,从而打开了一个研究领域这就是所谓的精确渐近线。以上两个结果均已在各个方向上进行了扩展和推广。 Kao(1978)证明了Heyde结果的逐点形式,即。对于计数过程N(ε)= Sigma(无穷大)(n = 1)1 {| Sn | > n epsilon},他表明lim(epsilon)SE箭头0 epsilon N-2(epsilon)->(d)EX2积分(无穷大)(0)1 {| W(u)| > u} du,其中W(。)是标准的维纳过程。在本文中,我们证明了扰动随机游走的类似物,并说明了它们如何自然地进入指数族的重复显着性检验的理论之内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号