首页> 外文期刊>Sensors and materials >Combination of Self-organizing Map and k-means Methods of Clustering for Online Games Marketing
【24h】

Combination of Self-organizing Map and k-means Methods of Clustering for Online Games Marketing

机译:自组织地图和K-Means群集用于在线游戏营销的方法的组合

获取原文
获取原文并翻译 | 示例

摘要

Data mining has been applied in many fields, such as pattern evaluation, image recognition, and data analysis. Clustering is one of the most popular methods of data mining. There are many algorithms concerning clustering, such as k-means and Farthest First in data mining fields, and adaptive resonance theory (ART) and self-organizing map (SOM) in machine learning. ART and SOM are unsupervised learning algorithms, which better determine the best numbers for clustering than only the k-means algorithm. This study is devoted to applying a combination of SOM with k-means to study the marketing of online games in Taiwan. The results show that the marketing segmentation of online games can be evaluated well by clustering the users' data obtained from any online or offline survey. The method that combines SOM with k-means has been shown in this study to provide a good evaluation of the market segmentation.
机译:数据挖掘已应用于许多领域,例如模式评估,图像识别和数据分析。聚类是最流行的数据挖掘方法之一。在数据挖掘领域的群集中有很多关于群集的算法,例如K-means和最遥最终,以及机器学习中的自适应谐振理论(艺术)和自组织地图(SOM)。 ART和SOM是无监督的学习算法,其更好地确定群集的最佳数字而不是仅K-Means算法。本研究致力于将SOM的组合与K-Means的组合应用于研究台湾在线游戏的营销。结果表明,通过在任何在线或离线调查中获取的用户数据可以很好地评估网络游戏的营销分割。本研究显示了将SOM与K-Meance结合的方法,以提供对市场细分的良好评估。

著录项

  • 来源
    《Sensors and materials》 |2020年第8期|2697-2707|共11页
  • 作者单位

    School of Mathematics and Information Engineering Longyan University 364012 Fujian China;

    School of Mathematics and Information Engineering Longyan University 364012 Fujian China;

    Fujian Xinzhi Information Technology Co. Ltd. 364012 Fujian China;

    School of Mathematics and Information Engineering Longyan University 364012 Fujian China;

    School of Mathematics and Information Engineering Longyan University 364012 Fujian China;

    Department of Electronic Engineering National Formosa University Huwei 632 Yunlin Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    data mining; SOM; k-means; online games; market segmentation;

    机译:数据挖掘;SOM;K-means;线上游戏;市场细分;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号