首页> 外文期刊>IEEE sensors journal >Layer-Wise Training Convolutional Neural Networks With Smaller Filters for Human Activity Recognition Using Wearable Sensors
【24h】

Layer-Wise Training Convolutional Neural Networks With Smaller Filters for Human Activity Recognition Using Wearable Sensors

机译:使用可穿戴传感器的人类活动识别较小过滤器的层展培训卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Recently, convolutional neural networks (CNNs) have set latest state-of-the-art on various human activity recognition (HAR) datasets. However, deep CNNs often require more computing resources, which limits their applications in embedded HAR. Although many successful methods have been proposed to reduce memory and FLOPs of CNNs, they often involve special network architectures designed for visual tasks, which are not suitable for deep HAR tasks with time series sensor signals, due to remarkable discrepancy. Therefore, it is necessary to develop lightweight deep models to perform HAR. As filter is the basic unit in constructing CNNs, it deserves further research whether re-designing smaller filters is applicable for deep HAR. In the article, inspired by the idea, we proposed a lightweight CNN using Lego filters for HAR. A set of lower-dimensional filters is used as Lego bricks to be stacked for conventional filters, which does not rely on any special network structure. The local loss function is used to train model. To our knowledge, this is the first paper that proposes lightweight CNN for HAR in ubiquitous and wearable computing arena. The experiment results on five public HAR datasets, UCI-HAR dataset, OPPORTUNITY dataset, UNIMIB-SHAR dataset, PAMAP2 dataset, and WISDM dataset collected from either smartphones or multiple sensor nodes, indicate that our novel Lego CNN with local loss can greatly reduce memory and computation cost over CNN, while achieving higher accuracy. That is to say, the proposed model is smaller, faster and more accurate. Finally, we evaluate the actual performance on an Android smartphone.
机译:最近,卷积神经网络(CNNS)在各种人类活动识别(HAR)数据集上设定了最新的最先进。然而,深CNN通常需要更多的计算资源,这将其在嵌入Har中的应用限制。尽管已经提出了许多成功的方法来减少CNN的内存和拖波,但它们通常涉及专为视觉任务而设计的特殊网络架构,这不适用于具有时间序列传感器信号的深钩任务,由于显着的差异。因此,有必要开发轻量级的深模型来执行Har。由于过滤器是构建CNNS的基本单元,它应该进一步研究重新设计较小滤波器是否适用于深哈。在文章中,通过这个想法的启发,我们建议使用乐高滤波器的轻量级CNN for Har。一组低维滤波器用作乐高砖用于堆叠用于传统过滤器,不依赖于任何特殊的网络结构。本地丢失功能用于培训模型。为了我们的知识,这是第一种提出用于围绕无处不在和可穿戴计算竞技场的轻量级CNN的论文。从智能手机或多个传感器节点收集的五个公共Har Datasets,UCI-Har DataSet,机会数据集,UNIMASET数据集,UNIMIB-SHAR数据集,PAMAP2数据集和WISDM数据集的实验结果表明我们具有本地丢失的新型乐高CNN可以大大减少内存和计算成本超过CNN,同时实现更高的准确性。也就是说,所提出的模型较小,更快,更准确。最后,我们评估了Android智能手机上的实际表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号