首页> 外文期刊>IEEE sensors journal >Multi-Fidelity Sensor Selection: Greedy Algorithms to Place Cheap and Expensive Sensors With Cost Constraints
【24h】

Multi-Fidelity Sensor Selection: Greedy Algorithms to Place Cheap and Expensive Sensors With Cost Constraints

机译:多保真传感器选择:贪婪算法,以具有成本约束的便宜和昂贵的传感器

获取原文
获取原文并翻译 | 示例

摘要

We develop greedy algorithms to approximate the optimal solution to the multi-fidelity sensor selection problem, which is a cost constrained optimization problem prescribing the placement and number of cheap (low signal-to-noise) and expensive (high signal-to-noise) sensors in an environment or state space. Specifically, we evaluate the composition of cheap and expensive sensors, along with their placement, required to achieve accurate reconstruction of a high-dimensional state. We use the column-pivoted QR decomposition to obtain preliminary sensor positions. How many of each type of sensor to use is highly dependent upon the sensor noise levels, sensor costs, overall cost budget, and the singular value spectrum of the data measured. Such nuances allow us to provide sensor selection recommendations based on computational results for asymptotic regions of parameter space. We also present a systematic exploration of the effects of the number of modes and sensors on reconstruction error when using one type of sensor. Our extensive exploration of multi-fidelity sensor composition as a function of data characteristics is the first of its kind to provide guidelines towards optimal multi-fidelity sensor selection.
机译:我们开发贪婪算法,以近似多保真传感器选择问题的最佳解决方案,这是规定的限制优化问题,规定了廉价(低信噪比)和昂贵的(高信噪比)环境或状态空间中的传感器。具体而言,我们评估廉价和昂贵的传感器的组成以及它们的放置,要求实现高维状态的准确重建。我们使用列枢转的QR分解来获得初步传感器位置。使用每种类型的传感器中有多少高度依赖于传感器噪声水平,传感器成本,总成本预算和测量数据的奇异值谱。此类细微差别允许我们根据参数空间的渐近区域的计算结果提供传感器选择建议。我们还系统性地探索了使用一种类型传感器时的模式和传感器数量和传感器的影响。我们对多保真传感器组成的广泛探索作为数据特征的函数是提供朝向最佳多保真传感器选择的指导方针。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号