首页> 外文期刊>IEEE sensors journal >Optimized Temperature Modulation of Micro-Hotplate Gas Sensors Through Pseudorandom Binary Sequences
【24h】

Optimized Temperature Modulation of Micro-Hotplate Gas Sensors Through Pseudorandom Binary Sequences

机译:通过伪随机二进制序列优化微热板气体传感器的温度调制

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, modulating the working temperature of metal-oxide gas sensors has been one of the most widely used methods to enhance sensor selectivity. When the working temperature of a gas sensor is modulated, the kinetics of the gas-sensor interaction are altered, and this leads to characteristic response patterns. Many works have shown that it is possible to identify and determine the concentration of gases in simple mixtures, even using a single temperature-modulated metal-oxide gas sensor. However, the selection of the frequencies used to modulate temperature remains an empirical process. In this paper, we introduce a method, borrowed from the field-of-system identification, to systematically determine the optimal set of modulating frequencies to solve a given gas-analysis application. The method consists of using maximum-length pseudorandom binary sequences to modulate the working temperature of metal-oxide gas sensors. Since these signals have a flat power spectrum (i.e., like white noise) in a wide frequency range, an estimate of the impulse response of each gas-sensor pair can be computed by the cross correlation of the excitatory and response sequences. Studying the impulse response estimates, the set of modulating frequencies that are useful to discriminate between different gases and to estimate gas concentration, is obtained in a systematic way. The method is demonstrated with tungsten oxide micro-hotplate gas sensors applied to detect ammonia, nitrogen dioxide, and their binary mixtures at different concentrations. It is shown that it is possible to find temperature-modulating frequencies to obtain high gas identification and quantification rates (95.55percent and 100percent, respectively).
机译:近年来,调节金属氧化物气体传感器的工作温度已成为提高传感器选择性的最广泛使用的方法之一。调节气体传感器的工作温度时,气体传感器相互作用的动力学会发生变化,这会导致特征响应模式。许多工作表明,即使使用单个温度调制的金属氧化物气体传感器,也可以识别和确定简单混合物中的气体浓度。然而,用于调制温度的频率的选择仍然是经验过程。在本文中,我们介绍一种借鉴系统识别领域的方法,以系统地确定最佳的调制频率集来解决给定的气体分析应用。该方法包括使用最大长度的伪随机二进制序列来调制金属氧化物气体传感器的工作温度。由于这些信号在较宽的频率范围内具有平坦的功率谱(即白噪声),因此可以通过激励和响应序列的互相关来计算每个气体传感器对的脉冲响应的估计值。通过研究脉冲响应估计,可以有系统地获得一组可用于区分不同气体并估计气体浓度的调制频率。氧化钨微热板气体传感器用于检测不同浓度的氨,二氧化氮及其二元混合物,证明了该方法。结果表明,可以找到温度调节频率以获得较高的气体识别和定量率(分别为95.55%和100%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号