首页> 外文期刊>Sensors Journal, IEEE >Wisture: Touch-Less Hand Gesture Classification in Unmodified Smartphones Using Wi-Fi Signals
【24h】

Wisture: Touch-Less Hand Gesture Classification in Unmodified Smartphones Using Wi-Fi Signals

机译:智慧:未修改的使用Wi-Fi信号的智能手机的轻触手势分类

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces Wisture, a new online machine learning solution for recognizing touch-less hand gestures on a smartphone (mobile device). Wisture relies on the standard Wi-Fi received signal strength measurements, long short-term memory recurrent neural network (RNN) learning method, thresholding filters, and a traffic induction approach. Unlike other Wi-Fi-based gesture recognition methods, the proposed method does not require a modification of the device hardware or the operating system and performs the gesture recognition without interfering with the normal operation of other smartphone applications. We discuss the characteristics of Wisture and conduct extensive experiments to compare the performance of the RNN learning method against the state-of-the-art machine learning solutions regarding both accuracy and efficiency. The experiments include a set of different scenarios with a change in spatial setup and network traffic between the smartphone and Wi-Fi access points. The results show that Wisture achieves an online gesture recognition accuracy of up to 93% (average 78%) in detecting and classifying three gestures.
机译:本文介绍了Wisture,这是一种新的在线机器学习解决方案,用于识别智能手机(移动设备)上的非触摸手势。 Wisture依靠标准的Wi-Fi接收信号强度测量,长期短期记忆递归神经网络(RNN)学习方法,阈值过滤器和流量诱导方法。与其他基于Wi-Fi的手势识别方法不同,所提出的方法不需要修改设备硬件或操作系统,并且可以在不干扰其他智能手机应用程序正常操作的情况下执行手势识别。我们讨论了Wisture的特性,并进行了广泛的实验,以比较RNN学习方法的性能与有关准确性和效率的最新机器学习解决方案。实验包括一组不同的场景,其中智能手机和Wi-Fi接入点之间的空间设置和网络流量发生了变化。结果表明,在检测和分类三个手势时,Wisture的在线手势识别精度高达93%(平均78%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号