首页> 外文期刊>Sensors Journal, IEEE >Detection of Breathing and Heart Rates in UWB Radar Sensor Data Using FVPIEF-Based Two-Layer EEMD
【24h】

Detection of Breathing and Heart Rates in UWB Radar Sensor Data Using FVPIEF-Based Two-Layer EEMD

机译:基于FVPIEF的两层EEMD检测UWB雷达传感器数据中的呼吸和心率

获取原文
获取原文并翻译 | 示例

摘要

Ultra-wideband (UWB) radar is an important remote sensing tool of life detection or a non-contact monitor of the vital signals. By processing the received UWB pulse echoes reflected from the body, different signals corresponding to heart activity and breathing, corrupted by body motion and the environment noise, are wanted to be separated clearly. However, the heartbeat signal is so tiny that it is covered by breathing harmonics and clutters. At the same time, since the frequencies of the vital signals are very close, usually around 1 Hz, it is difficult to apply an ordinary frequency filter to separate them apart. This problem induces that the vital signal detection method, usually, only detects the large breath signal, not the heartbeat signal. To solve this problem, a novel method is provided, in this paper, to extract the heartbeat and the breath information simultaneously. The method uses the feature time index with the first valley peak of the energy function of intrinsic mode functions (FVPIEF) calculated by pseudo bi-dimension ensemble empirical mode decomposition method and extracts the vital signals by the ensemble empirical mode decomposition (EEMD). Both simulation and experiment results evidently show that the proposed FVPIEF based two-layer EEMD method is effective for separating the small heartbeat signal from the large breath signal and significantly improves the evaluation of heart and breathing rates in both hold-breathing and breathing conditions.
机译:超宽带(UWB)雷达是生命探测或重要信号的非接触式监控器的重要遥感工具。通过处理从人体反射的接收到的UWB脉冲回波,希望将与人体活动和呼吸相对应的,被人体运动和环境噪声破坏的不同信号清楚地分开。但是,心跳信号是如此之小,以至于呼吸谐波和杂波会掩盖它。同时,由于生命信号的频率非常接近,通常约为1 Hz,因此很难使用普通的频率滤波器将它们分开。该问题导致生命信号检测方法通常仅检测到较大的呼吸信号,而不检测到心跳信号。为了解决这个问题,本文提供了一种新颖的方法来同时提取心跳和呼吸信息。该方法将特征时间指数与通过伪二维整体经验模式分解方法计算出的固有模式函数(FVPIEF)的能量函数的第一个谷峰一起使用,并通过整体经验模式分解(EEMD)提取生命信号。仿真和实验结果均清楚地表明,基于FVPIEF的两层EEMD方法可有效地将小心跳信号与大呼吸信号分开,并显着提高了屏住呼吸和呼吸条件下对心脏和呼吸频率的评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号