首页> 外文期刊>Sensors Journal, IEEE >Phonocardiographic Sensing Using Deep Learning for Abnormal Heartbeat Detection
【24h】

Phonocardiographic Sensing Using Deep Learning for Abnormal Heartbeat Detection

机译:使用深度学习进行异常心跳检测的心电图传感

获取原文
获取原文并翻译 | 示例

摘要

Deep learning-based cardiac auscultation is of significant interest to the healthcare community as it can help reducing the burden of manual auscultation with automated detection of abnormal heartbeats. However, the problem of automatic cardiac auscultation is complicated due to the requirement of reliable and highly accurate systems, which are robust to the background noise in the heartbeat sound. In this paper, we propose a Recurrent Neural Networks (RNNs)-based automated cardiac auscultation solution. Our choice of RNNs is motivated by their great success of modeling sequential or temporal data even in the presence of noise. We explore the use of various RNN models, and demonstrate that these models significantly outperform the best reported results in the literature. We also present the run-time complexity of various RNNs, which provides insight about their complexity versus performance trade-offs.
机译:基于深度学习的心脏听诊对医疗保健界非常重要,因为它可以通过自动检测异常心跳来帮助减轻手动听诊的负担。然而,由于需要可靠且高度精确的系统,因此自动心脏听诊的问题变得复杂,该系统对于心跳声音中的背景噪声具有鲁棒性。在本文中,我们提出了一种基于递归神经网络(RNN)的自动心脏听诊解决方案。我们选择RNN的动机是,即使在存在噪声的情况下,对顺序或时间数据建模也取得了巨大的成功。我们探索了各种RNN模型的使用,并证明这些模型明显优于文献中报告的最佳结果。我们还介绍了各种RNN的运行时复杂性,从而提供了有关其复杂性与性能折衷的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号