首页> 外文期刊>Sensors Journal, IEEE >Reconstruction Algorithm for Lost Frame of Multiview Videos in Wireless Multimedia Sensor Network Based on Deep Learning Multilayer Perceptron Regression
【24h】

Reconstruction Algorithm for Lost Frame of Multiview Videos in Wireless Multimedia Sensor Network Based on Deep Learning Multilayer Perceptron Regression

机译:基于深度学习多层感知器回归的无线多媒体传感器网络多视点视频丢帧重建算法

获取原文
获取原文并翻译 | 示例

摘要

Wireless multimedia sensor network (WMSN) is important for environmental monitoring. When the sensors are used as cameras, the network can be regarded as a multiview video system. The Packet loss may occur when the multiview videos are transmitted wirelessly. When the video frames are lost during transmission, a frame reconstruction method is needed in the decoder to estimate the missing pixels. In the proposed work, a reconstruction algorithm for lost frame of multiview videos in the WMSN based on deep learning methods is presented. A novel pixel estimation algorithm is developed using multilayer perceptron regression (MPR) with the deep learning method. Furthermore, a modified inpainting method is proposed with the use of the information from the optical flow algorithm with the neighboring available frames. Compared with the state-of-the-art method, the proposed MPR method with the traditional inpainting method increased the average peak signal-to-noise ratio up to 5.62 dB. The combination of the proposed MPR method with the proposed inpainting method outperformed previous proposed combination up to 8.32 dB on average, showing the significance of the proposed inpainting method.
机译:无线多媒体传感器网络(WMSN)对于环境监控非常重要。当传感器用作摄像机时,该网络可以视为多视图视频系统。无线传输多视点视频时,可能会发生丢包。当视频帧在传输过程中丢失时,解码器中需要一种帧重建方法来估计丢失的像素。在提出的工作中,提出了一种基于深度学习方法的WMSN中多视点视频丢失帧的重建算法。使用多层感知器回归(MPR)和深度学习方法,开发了一种新颖的像素估计算法。此外,提出了一种改进的修复方法,该方法利用了来自光流算法的信息以及相邻的可用帧。与最新方法相比,与传统的修复方法相比,建议的MPR方法将平均峰值信噪比提高到5.62 dB。所提出的MPR方法与所提出的修补方法的组合在性能上平均达到了8.32 dB,优于先前提出的组合,显示了所提出的修补方法的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号