首页> 外文期刊>Sensors Journal, IEEE >A New Framework to Infer Intra- and Inter-Brain Sparse Connectivity Estimation for EEG Source Information Flow
【24h】

A New Framework to Infer Intra- and Inter-Brain Sparse Connectivity Estimation for EEG Source Information Flow

机译:脑电源信息流的脑内和脑间稀疏连通性估计的新框架

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new framework for sparse brain effective connectivity estimation of electroencephalographic (EEG) signals. The method is based on the sparsely connected source analysis using the time-varying multivariate auto-regressive (tv-MVAR) model, to find the intraand interbrain region connectivity. The proposed method shows the tv-MVAR model with sparse coefficient obtained from the least absolute shrinkage and selection operator (LASSO) penalty solver. To some extent, the sparse model has eliminated the false interpretation of connected brain region due to the presence of volume conduction effect, providing an in-depth understanding of brain network. The explicit contributions of this paper are: 1) newly introduced time-varying sparsed MVAR model (Adaptive autoregressive); 2) simplified sparsed framework to obtain the enhanced connectivity estimation; 3) sparsity constraint added by LASSO penalization method and its comparison with other penalization techniques; 4) comparison between the general non-sparsed tv-MVAR model and the sparsed tv-MVAR model; and 5) found to be a promising approach to locate the sparsely connected sources. The results are verified and found to be consistent with exhaustive real-time EEG time series obtained from the experiment during short guided meditation.
机译:本文为脑电图(EEG)信号的稀疏大脑有效连通性估计提供了一个新框架。该方法基于使用时变多元自回归(tv-MVAR)模型的稀疏连接源分析,以找到大脑内和大脑间区域的连通性。所提出的方法展示了从最小绝对收缩和选择算子(LASSO)罚分求解器获得的具有稀疏系数的tv-MVAR模型。在某种程度上,由于存在体积传导效应,稀疏模型消除了对连接的大脑区域的错误解释,从而提供了对大脑网络的深入了解。本文的显着贡献是:1)新引入的时变稀疏MVAR模型(​​自适应自回归); 2)简化的稀疏框架以获得增强的连通性估计; 3)LASSO罚分法增加的稀疏约束及其与其他罚分技术的比较; 4)普通非稀疏的tv-MVAR模型与稀疏的tv-MVAR模型之间的比较; 5)被发现是定位稀疏连接源的一种有前途的方法。验证结果并发现与短时静坐冥想期间从实验中获得的详尽实时EEG时间序列一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号