首页> 外文期刊>IEEE sensors journal >Energy-Efficient Software-Defined Data Collection by Participatory Sensing
【24h】

Energy-Efficient Software-Defined Data Collection by Participatory Sensing

机译:参与式传感的节能软件定义数据收集

获取原文
获取原文并翻译 | 示例

摘要

Internet of Things (IoT) has been widely used in big data applications, such as intelligent transportation, intelligent tourism, and so on. On the one hand, in order to provide better services, a lot of IoT devices are extensively installed in the city for collecting environmental data. Then, the sensors and communication modules integrated in the IoT devices will consume a lot of energy and bandwidth during data collection and transmission. On the other hand, smartphones and cars have become important parts of people's daily life, and integrate more and more sensors. Thus, the owners of smartphones and cars can be the environmental data contributors for big data applications. However, people's activities are not programmed and hard to predict, and data contribution may also cause privacy leakage. In this paper, we propose a multi-role-based participatory sensing architecture, which assigns participants to different work roles. Then, through a coordination mechanism among work roles, the application server can control the flow of data between participants or participants and application server without knowing the details of data, which can reduce the privacy leakage. Meanwhile, the data aggregators can help the application server to ensure the quality of the collected data. Then, the application server can select participants or aggregate data without collecting participants' personal information and worrying about the quality of the collected data. Furthermore, we also propose a QoI-aware, budget-fairness-based participant selection approach for multi-task participatory systems and provide a suboptimal solution to the defined optimization problem. Finally, we have compared our proposed scheme with existing methods via extensive simulations based on the data set of mobility traces of taxi cabs in Rome, Italy. Extensive simulation results well justify the effectiveness and robustness of our approach.
机译:物联网(IoT)已广泛用于大数据应用程序,例如智能交通,智能旅游等。一方面,为了提供更好的服务,城市中广泛安装了许多物联网设备以收集环境数据。然后,集成在IoT设备中的传感器和通信模块将在数据收集和传输期间消耗大量能量和带宽。另一方面,智能手机和汽车已经成为人们日常生活的重要组成部分,并集成了越来越多的传感器。因此,智能手机和汽车的所有者可以成为大数据应用程序的环境数据贡献者。但是,人们的活动没有经过编程且难以预测,数据贡献也可能导致隐私泄露。在本文中,我们提出了一种基于多角色的参与式感知体系结构,该体系将参与者分配给不同的工作角色。然后,通过工作角色之间的协调机制,应用服务器可以控制参与者之间或参与者与应用服务器之间的数据流,而无需了解数据的详细信息,从而可以减少隐私泄漏。同时,数据聚合器可以帮助应用服务器确保所收集数据的质量。然后,应用服务器可以选择参与者或汇总数据,而无需收集参与者的个人信息,而不必担心所收集数据的质量。此外,我们还为多任务参与系统提出了一种基于QoI意识,基于预算公平性的参与者选择方法,并为定义的优化问题提供了次优解决方案。最后,我们基于意大利罗马出租车的移动轨迹数据集,通过广泛的模拟将我们提出的方案与现有方法进行了比较。大量的仿真结果很好地证明了我们方法的有效性和鲁棒性。

著录项

  • 来源
    《IEEE sensors journal》 |2016年第20期|7315-7324|共10页
  • 作者单位

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

    School of Information Science and Technology, Tsinghua University, Beijing, China;

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Servers; Data collection; Mobile communication; Data privacy; Intelligent sensors;

    机译:服务器;数据收集;移动通信;数据隐私;智能传感器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号