首页> 外文期刊>Sensors Journal, IEEE >Improved Wi-Fi RSSI Measurement for Indoor Localization
【24h】

Improved Wi-Fi RSSI Measurement for Indoor Localization

机译:改进的Wi-Fi RSSI测量,用于室内定位

获取原文
获取原文并翻译 | 示例

摘要

Indoor localization based on Wi-Fi received signal strength indication (RSSI) has the advantage of low cost and easy implementation compared with a range of other localization approaches. However, Wi-Fi RSSI suffers from multipath interference in indoor dynamic environments, resulting in significant errors in RSSI observations. To handle this issue, a number of different methods have been proposed in the literature, including the mean method, Kalman filter algorithm, and the particle filter algorithm. It is observed that these existing methods may not perform sufficiently well in ever-changing dynamic indoor environments. This paper presents an algorithm to improve RSSI observations by using the average of a number of selected maximum RSSI observations. Smoothness index is employed to evaluate the quality of RSSI so as to select an appropriate number of RSSI observations. Experiments were conducted in four rooms and a corridor within an office building and the results demonstrate that the proposed method considerably outperforms the existing algorithms in terms of positioning accuracy, which is defined as the cumulative distribution function of position error.
机译:与一系列其他定位方法相比,基于Wi-Fi接收信号强度指示(RSSI)的室内定位具有成本低廉和易于实现的优势。但是,Wi-Fi RSSI在室内动态环境中会遭受多径干扰,从而导致RSSI观测结果出现重大错误。为了解决这个问题,文献中提出了许多不同的方法,包括均值方法,卡尔曼滤波算法和粒子滤波算法。可以观察到,这些现有方法在不断变化的动态室内环境中可能无法很好地执行。本文提出了一种算法,可以通过使用多个选定的最大RSSI观测值的平均值来改善RSSI观测值。平滑度指数用于评估RSSI的质量,以便选择适当数量的RSSI观测值。在办公大楼内的四个房间和走廊中进行了实验,结果表明,该方法在定位精度方面明显优于现有算法,该精度被定义为位置误差的累积分布函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号