首页> 外文期刊>Semiconductor science and technology >Channel mobility and on-resistance of vertical double implanted 4H-SiC MOSFETs at elevated temperatures
【24h】

Channel mobility and on-resistance of vertical double implanted 4H-SiC MOSFETs at elevated temperatures

机译:垂直双注入4H-SiC MOSFET在高温下的沟道迁移率和导通电阻

获取原文
获取原文并翻译 | 示例
       

摘要

Temperature and gate voltage dependences of the channel electron mobility were studied in short-channel high-voltage vertical double implanted 4H-SiC MOSFETs (VDMOSFETs). With increasing gate voltage, field effect electron mobility, μ_(FE), increased, tending to saturate at large V_g values reaching a maximum of ~4 cm~2 Vh~(-1) s~(-1) at room temperature. With the temperature increase, μ_(FE) increased monotonically and reached a value of ~16 cm~2 V~(-1) s~(-1) at 510 K. These trends are explained by the high density of the interface traps, which was extracted from the temperature dependence of the threshold voltage. The electron mobility in the drift region decreased with temperature increase. As a result, the contribution of the drift region to the on-resistance was dominant at elevated temperatures limiting the VDMOSFETs performance at temperatures above ~420 K. The on-resistance of VDMOSFETs was only weakly dependent on temperature within the temperature range from 300 K to 510 K.
机译:在短沟道高压垂直双注入4H-SiC MOSFET(VDMOSFET)中研究了沟道电子迁移率的温度和栅极电压依赖性。随着栅极电压的增加,场效应电子迁移率μ_(FE)增大,在大的V_g值下趋于饱和,在室温下达到最大〜4 cm〜2 Vh〜(-1)s〜(-1)。随着温度的升高,μ_(FE)单调增加,在510 K时达到〜16 cm〜2 V〜(-1)s〜(-1)。这些趋势可以通过界面陷阱的高密度来解释,它是从阈值电压的温度依赖性中提取的。漂移区中的电子迁移率随温度升高而降低。结果,在升高的温度下,漂移区对导通电阻的贡献占主导地位,从而限制了VDMOSFET在约420 K以上的温度下的性能。VDMOSFET的导通电阻仅在300 K的温度范围内微弱地依赖于温度至510K。

著录项

  • 来源
    《Semiconductor science and technology》 |2009年第7期|65-70|共6页
  • 作者单位

    Ioffe Physico-Technical Institute of Russian Academy of Sciences, 26 Politekhnicheskaya, 194021 St. Petersburg, Russia Department of Electrical, Computer, and Systems Engineering, CII 9017, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA;

    Department of Electrical, Computer, and Systems Engineering, CII 9017, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA;

    Ioffe Physico-Technical Institute of Russian Academy of Sciences, 26 Politekhnicheskaya, 194021 St. Petersburg, Russia;

    Ioffe Physico-Technical Institute of Russian Academy of Sciences, 26 Politekhnicheskaya, 194021 St. Petersburg, Russia;

    CREE Inc., 4600 Silicon Dr., Durham NC 27703, USA;

    CREE Inc., 4600 Silicon Dr., Durham NC 27703, USA;

    CREE Inc., 4600 Silicon Dr., Durham NC 27703, USA;

    CREE Inc., 4600 Silicon Dr., Durham NC 27703, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 01:32:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号