首页> 外文期刊>Semiconductor science and technology >Effects Of Three-Dimensional Electric-field Coupling On A Side-gated Nanotransistor
【24h】

Effects Of Three-Dimensional Electric-field Coupling On A Side-gated Nanotransistor

机译:三维电场耦合对侧栅纳米晶体管的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Using a two-dimensional (2D) ensemble Monte Carlo method self-consistently coupled with three-dimensional (3D) Poisson equations, a two-dimensional electron gas (2DEG)-based planar nanodevice, or a side-gated nanotransistor (SGT), is analyzed. Compared with the previous entirely 2D simulations, the extra inclusion of a 3D electric-field solver has allowed for a quantitative study of electric-field coupling beyond the active layer (2DEG). Our results show that the device characteristics are very sensitive to not only the depth of insulating trenches into the device substrate but also a change in dielectric layers on the device surface. A coating of a dielectric thin film with a thickness of only 5 nm on the device surface is enough to significantly enhance the current. Also continuously increasing the distance between a dielectric layer and the SGT surface results in an exponential decrease in the source-drain current. Moreover, the dependence of the source-drain current on the dielectric thickness is non-monotonic. The current presents a peak when the dielectric thickness is about 150 nm and then reduces to a saturated state when the dielectric thickness is more than 300 nm. We discuss these effects in terms of the special geometric structure and working principle of the SGT.
机译:使用二维(2D)集成蒙特卡罗方法与三维(3D)泊松方程自洽耦合,基于二维电子气(2DEG)的平面纳米器件或侧栅纳米晶体管(SGT),被分析。与以前的完全2D模拟相比,额外包含3D电场求解器可以对有源层(2DEG)以外的电场耦合进行定量研究。我们的结果表明,器件特性不仅对绝缘沟槽进入器件衬底的深度非常敏感,而且对器件表面介电层的变化非常敏感。在器件表面上仅5 nm厚的电介质薄膜涂层足以显着提高电流。同样,不断增加介电层和SGT表面之间的距离也会导致源极-漏极电流呈指数下降。此外,源极-漏极电流对介电层厚度的依赖性是非单调的。电流在介电层厚度约为150 nm时出现一个峰值,然后在介电层厚度大于300 nm时减小到饱和状态。我们将根据SGT的特殊几何结构和工作原理来讨论这些影响。

著录项

  • 来源
    《Semiconductor science and technology》 |2011年第9期|p.180-185|共6页
  • 作者

    K Y Xu; J W Xiong; A M Song; G Wang;

  • 作者单位

    Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, People's Republic of China;

    Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, People's Republic of China;

    School of Electrical and Electronic Engineering, University of Manchester, Manchester M60 1QD, UK;

    State key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University,Guangzhou 510275, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号