首页> 外文期刊>Semiconductor science and technology >Control of Ge1-x-ySixSny layer lattice constant for energy band alignment in Ge1-xSnx/Ge1-x-ySixSny heterostructures
【24h】

Control of Ge1-x-ySixSny layer lattice constant for energy band alignment in Ge1-xSnx/Ge1-x-ySixSny heterostructures

机译:Ge1-xSnx / Ge1-x-ySixSny异质结构中能带排列的Ge1-x-ySixSny层晶格常数的控制

获取原文
获取原文并翻译 | 示例
       

摘要

The energy band alignment of Ge1-xSnx/Ge1-x-ySixSny heterostructures was investigated, and control of the valence band offset at the Ge1-xSnx/Ge1-x-ySixSny heterointerface was achieved by controlling the Si and Sn contents in the Ge1-x-ySixSny layer. The valence band offset in the Ge0.902Sn0.098/Ge0.41Si0.50Sn0.09 heterostructure was evaluated to be as high as 330 meV, and its conduction band offset was estimated to be 150 meV by considering the energy bandgap calculated from the theoretical prediction. In addition, the formation of the strain-relaxed Ge1-x-ySixSny layer was examined and the crystalline structure was characterized. The epitaxial growth of a strain-relaxed Ge0.64Si0.21Sn0.15 layer with the degree of strain relaxation of 55% was examined using a virtual Ge substrate. Moreover, enhancement of the strain relaxation was demonstrated by post-deposition annealing, where a degree of strain relaxation of 70% was achieved after annealing at 400 degrees C. These results indicate the possibility for enhancing the indirect-direct crossover with a strained and high-Sn-content Ge1-xSnx layer on a strain-relaxed Ge1-x-ySixSny layer, realizing preferable carrier confinement by type-I energy band alignment with high conduction and valence band offsets.
机译:研究了Ge1-xSnx / Ge1-x-ySixSny异质结构的能带排列,并通过控制Ge1-xSnx / Ge1-x-ySixSny异质界面上的价带偏移来控制x-ySixSny图层。 Ge0.902Sn0.098 / Ge0.41Si0.50Sn0.09异质结构中的价带偏移被评估为高达330 meV,并且考虑到根据理论计算出的能带隙,其导带偏移估计为150 meV。预测。另外,检查了应变松弛的Ge 1-x-ySixSny层的形成,并表征了晶体结构。使用虚拟的Ge衬底检查了应变松弛程度为55%的应变松弛的Ge0.64Si0.21Sn0.15层的外延生长。此外,通过后沉积退火证明了应变松弛的增强,其中在400℃下退火之后,应变松弛的程度达到了70%。这些结果表明,通过应变和高应变来增强间接-直接交叉的可能性。在应变松弛的Ge1-x-ySixSny层上的-Sn含量Ge1-xSnx层,通过具有高导带和价带偏移的I型能带对准实现了较好的载流子限制。

著录项

  • 来源
    《Semiconductor science and technology》 |2017年第10期|104008.1-104008.8|共8页
  • 作者单位

    Nagoya Univ, Grad Sch Engn, Dept Mat Phys, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan;

    Nagoya Univ, Sch Engn, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan;

    Nagoya Univ, Grad Sch Engn, Dept Mat Phys, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan;

    Nagoya Univ, Grad Sch Engn, Dept Mat Phys, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan;

    Nagoya Univ, Grad Sch Engn, Dept Mat Phys, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan|Nagoya Univ, Inst Mat & Syst Sustainabil, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan;

    Nagoya Univ, Inst Mat & Syst Sustainabil, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    germanium silicon tin; band alignment; Group-IV semiconductor; strain relaxation; heterostructure;

    机译:锗硅锡;能带取向;IV族半导体;应变弛豫;异质结构;
  • 入库时间 2022-08-18 01:29:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号