首页> 外文期刊>Semiconductor science and technology >Small compressive strain-induced semiconductor-metal transition and tensile strain-enhanced thermoelectric properties in monolayer PtTe2
【24h】

Small compressive strain-induced semiconductor-metal transition and tensile strain-enhanced thermoelectric properties in monolayer PtTe2

机译:单层PtTe2的小压缩应变诱导的半导体-金属转变和拉伸应变增强的热电特性

获取原文
获取原文并翻译 | 示例
           

摘要

Biaxial strain effects on the. electronic structures and thermoelectric properties of monolayer PtTe2 are investigated by using generalized gradient approximation (GGA) plus spin-orbit coupling. for the electron part and GGA for the phonon part. Calculated results show that a. small compressive strain (about-3%) can induce semiconductor-to-metal transition, which can easily be achieved in experiment. Band. convergence. in the conduction bands is observed for unstrained PtTe2, which can be removed by both compressive and tensile strain. Tensile strain can give rise to band. convergence. in the valence bands by changing the position of the. valence band maximum, which can induce an. enhanced Seebeck coefficient, and bring about. high power factors. It is found that tensile strain can also reduce lattice thermal conductivity. More specifically, the lattice thermal conductivity at a. strain of 4% can decrease by about 19% compared to the unstrained case. at room temperature. According to the. tensile strain effects on ZT(e) and lattice thermal conductivity, tensile strain can indeed. improve the. p-type efficiency of thermoelectric conversion. Our results demonstrate the potential of strain engineering in PtTe2 for applications in electronics and thermoelectricity.
机译:对双轴应变的影响。通过使用广义梯度近似(GGA)和自旋轨道耦合研究了单层PtTe2的电子结构和热电性能。电子部分和GGA用于声子部分。计算结果表明。较小的压缩应变(约-3%)会引起半导体向金属的转变,这在实验中很容易实现。带。收敛。在导带中观察到未应变的PtTe2,可以通过压缩应变和拉伸应变将其去除。拉伸应变会产生条带。收敛。通过改变价带中的位置。价带最大,可诱发一个。增强塞贝克系数,并带来收益。高功率因数。发现拉伸应变还可以降低晶格热导率。更具体地,在a处的晶格热导率。与未应变的情况相比,应变为4%的应变可以减少约19%。在室温下。根据。拉伸应变对ZT(e)和晶格热导率的影响确实可以。改善。 p型热电转换效率。我们的结果证明了PtTe2应变工程在电子和热电应用中的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号