首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Pseudo-Conventional N-Gram Representation of the Discriminative N-Gram Model for LVCSR
【24h】

Pseudo-Conventional N-Gram Representation of the Discriminative N-Gram Model for LVCSR

机译:LVCSR的判别性N-Gram模型的伪常规N-Gram表示

获取原文
获取原文并翻译 | 示例

摘要

The discriminative n-gram modeling approach re-ranks the $N$-best hypotheses generated during decoding and can effectively improve the performance of large-vocabulary continuous speech recognition (LVCSR). This work recasts the discriminative n-gram model as a pseudo-conventional n-gram model. The recast enables the power of discriminative n-gram modeling to be conveniently incorporated in a single-pass decoding procedure. We also propose an efficient method to apply the pseudo model to rescore the recognition lattices generated during decoding. Experimental results show that when the test data is similar in nature to the training data, applying the pseudo model to rescore the recognition lattices can achieve better performance and efficiency, when compared with discriminative $N$-best re-ranking (i.e., re-ranking the $N$-best hypotheses with the discriminative n-gram model). We demonstrate that in this case, applying the pseudo model in decoding can be even more advantageous. However, when the test data is different in nature from the training data, discriminative $N$ -best re-ranking may offer greater benefits than pseudo-model based lattice rescoring or decoding. Based on the pseudo-conventional n-gram representation, we also investigate the feasibility of combining discriminative n-gram modeling with other recognition post-processes and demonstrate that cumulative performance improvements can be achieved.
机译:判别性n元语法建模方法重新排列了解码期间生成的$ N $最佳假设,并可以有效地改善大词汇量连续语音识别(LVCSR)的性能。这项工作将区分性n-gram模型重铸为伪常规n-gram模型。重铸使得区分n-gram模型的功能可以方便地合并到单遍解码过程中。我们还提出了一种有效的方法来应用伪模型来对在解码期间生成的识别格进行重新评分。实验结果表明,当测试数据与训练数据本质上相似时,与有区别的$ N $最佳重新排序(即重新排序)相比,使用伪模型对识别格子进行重新评分可以实现更好的性能和效率。使用判别性n元语法模型对$ N $最佳假设进行排名)。我们证明了在这种情况下,将伪模型应用于解码可能会更加有利。但是,当测试数据与训练数据本质上不同时,与基于伪模型的点阵记录或解码相比,具有区别性的$ N $最佳重新排序可能会提供更大的好处。基于伪常规n-gram表示,我们还研究了将区分性n-gram建模与其他识别后处理相结合的可行性,并证明可以实现累积性能的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号