首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Online Learning and Acoustic Feature Adaptation in Large-Margin Hidden Markov Models
【24h】

Online Learning and Acoustic Feature Adaptation in Large-Margin Hidden Markov Models

机译:大余量隐马尔可夫模型中的在线学习和声学特征自适应

获取原文
获取原文并翻译 | 示例

摘要

We explore the use of sequential, mistake-driven updates for online learning and acoustic feature adaptation in large-margin hidden Markov models (HMMs). The updates are applied to the parameters of acoustic models after the decoding of individual training utterances. For large-margin training, the updates attempt to separate the log-likelihoods of correct and incorrect transcriptions by an amount proportional to their Hamming distance. For acoustic feature adaptation, the updates attempt to improve recognition by linearly transforming the features computed by the front end. We evaluate acoustic models trained in this way on the TIMIT speech database. We find that online updates for large-margin training not only converge faster than analogous batch optimizations, but also yield lower phone error rates than approaches that do not attempt to enforce a large margin. Finally, experimenting with different schemes for initialization and parameter-tying, we find that acoustic feature adaptation leads to further improvements beyond the already significant gains achieved by large-margin training.
机译:我们探索在大利润隐马尔可夫模型(HMM)中使用顺序错误驱动的更新进行在线学习和声学特征自适应。在对单个训练发音进行解码之后,会将更新应用于声学模型的参数。对于大范围训练,更新尝试将正确和错误转录的对数似然比与汉明距离成比例。对于声学特征自适应,更新尝试通过线性变换前端计算的特征来提高识别度。我们评估在TIMIT语音数据库中以这种方式训练的声学模型。我们发现,用于大利润培训的在线更新不仅比类似的批次优化收敛更快,而且比不尝试大幅度提高利润的方法产生的电话错误率更低。最后,通过对初始化和参数绑定的不同方案进行试验,我们发现声学特征自适应可以带来超出大幅度训练所获得的明显收益的进一步改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号