首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Impact of Social Network Structure on Multimedia Fingerprinting Misbehavior Detection and Identification
【24h】

Impact of Social Network Structure on Multimedia Fingerprinting Misbehavior Detection and Identification

机译:社会网络结构对多媒体指纹不良行为检测与识别的影响

获取原文
获取原文并翻译 | 示例

摘要

Users in video-sharing social networks actively interact with each other, and it is of critical importance to model user behavior and analyze the impact of human factors on video sharing systems. In video-sharing social networks, users have access to extra resources from their peers, and they also contribute their own resources to help others. Each user wants to maximize his/her own payoff, and they negotiate with each other to achieve fairness and address this conflict. However, some selfish users may cheat to their peers and manipulate the system to maximize their own payoffs, and cheat prevention is a critical requirement in many social networks to stimulate user cooperation. It is of ample importance to design monitoring mechanisms to detect and identify misbehaving users, and to design cheat-proof cooperation stimulation strategies. Using video fingerprinting as an example, this paper analyzes the complex dynamics among colluders during multiuser collusion, and explores possible monitoring mechanisms to detect and identify misbehaving colluders in multiuser collusion. We consider two types of colluder networks: one has a centralized structure with a trusted ringleader, and the other is a distributed peer-structured network. We investigate the impact of network structures on misbehavior detection and identification, propose different selfish colluder identification schemes for different colluder networks, and analyze their performance. We show that the proposed schemes can accurately identify selfish colluders without falsely accusing others even under attacks. We also evaluate their robustness against framing attacks and quantify the maximum number of framing colluders that they can resist.
机译:共享视频的社交网络中的用户彼此之间进行主动交互,因此,对用户行为进行建模并分析人为因素对视频共享系统的影响至关重要。在共享视频的社交网络中,用户可以从同龄人那里获得额外的资源,他们也可以贡献自己的资源来帮助他人。每个用户都希望最大化自己的收益,并且他们彼此协商以实现公平并解决该冲突。但是,一些自私的用户可能会欺骗他们的同龄人并操纵系统以最大程度地提高自己的收益,而防止欺诈行为是许多社交网络中刺激用户合作的关键要求。设计监视机制以检测和识别行为不当的用户并设计防作弊的合作刺激策略非常重要。以视频指纹为例,分析了多用户共谋期间共谋之间的复杂动态,并探索了检测和识别多用户共谋中行为不端的可能监视机制。我们考虑两种类型的共谋网络:一种是具有受信任的首领的集中式结构,另一种是分布式的对等结构网络。我们调查网络结构对不良行为检测和识别的影响,针对不同的共谋网络提出不同的自私共谋识别方案,并分析其性能。我们表明,提出的方案可以准确地识别自私的共谋者,即使在受到攻击的情况下也不会错误地指责他人。我们还评估了它们对帧攻击的鲁棒性,并量化了它们可以抵抗的最大帧共谋。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号