首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Image Retargeting Quality Assessment: A Study of Subjective Scores and Objective Metrics
【24h】

Image Retargeting Quality Assessment: A Study of Subjective Scores and Objective Metrics

机译:图像重定位质量评估:主观评分和客观指标的研究

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the result of a recent large-scale subjective study of image retargeting quality on a collection of images generated by several representative image retargeting methods. Owning to many approaches to image retargeting that have been developed, there is a need for a diverse independent public database of the retargeted images and the corresponding subjective scores to be freely available. We build an image retargeting quality database, in which 171 retargeted images (obtained from 57 natural source images of different contents) were created by several representative image retargeting methods. And the perceptual quality of each image is subjectively rated by at least 30 viewers, meanwhile the mean opinion scores (MOS) were obtained. It is revealed that the subject viewers have arrived at a reasonable agreement on the perceptual quality of the retargeted image. Therefore, the MOS values obtained can be regarded as the ground truth for evaluating the quality metric performances. The database is made publicly available (Image Retargeting Subjective Database, [Online]. Available: http://ivp.ee.cuhk.edu.hk/projects/demo/retargeting/index.html) to the research community in order to further research on the perceptual quality assessment of the retargeted images. Moreover, the built image retargeting database is analyzed from the perspectives of the retargeting scale, the retargeting method, and the source image content. We discuss how to retarget the images according to the scale requirement and the source image attribute information. Furthermore, several publicly available quality metrics for the retargeted images are evaluated on the built database. How to develop an effective quality metric for retargeted images is discussed through a specifically designed subjective testing process. It is demonstrated that the metric performance can be further improved, by fusing the descriptors of shape distortion and content information loss.
机译:本文介绍了最近一次大规模主观研究图像重定位质量的结果,该图像重定位质量是由几种代表性图像重定位方法生成的图像集合。由于已经开发了许多用于图像重新定向的方法,因此需要自由地获得多样化的,独立的,重新定向的图像和相应的主观分数的公共数据库。我们建立了一个图像重定目标质量数据库,其中通过几种代表性的图像重定目标方法创建了171个重定目标图像(从57个不同内容的自然源图像中获得)。每个图像的感知质量至少由30位观看者进行主观评估,同时获得平均意见得分(MOS)。结果表明,对象观看者已经就重新定向图像的感知质量达成了合理的共识。因此,获得的MOS值可以视为评估质量度量性能的基础。该数据库向研究社区公开可用(图像重新定向主观数据库,[在线]。可用:http://ivp.ee.cuhk.edu.hk/projects/demo/retargeting/index.html),以便进一步开发。重定向图像的感知质量评估研究。此外,从重新定向比例,重新定向方法和源图像内容的角度分析了构建的图像重新定向数据库。我们讨论如何根据比例尺要求和源图像属性信息重新定位图像。此外,在已建立的数据库上评估了重新定位图像的几个公开可用的质量指标。通过专门设计的主观测试过程,讨论了如何为重新定位的图像开发有效的质量指标。已经证明,通过融合形状失真和内容信息丢失的描述符,可以进一步提高度量性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号