首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Toeplitz Approximation to Empirical Correlation Matrix of Asset Returns: A Signal Processing Perspective
【24h】

Toeplitz Approximation to Empirical Correlation Matrix of Asset Returns: A Signal Processing Perspective

机译:资产收益率经验相关矩阵的Toeplitz逼近:信号处理的观点

获取原文
获取原文并翻译 | 示例

摘要

Empirical correlation matrix of asset returns has its intrinsic noise component. Eigen decomposition, also called Karhunen-Loeve Transform (KLT), is employed for noise filtering where an identified subset of eigenvalues replaced by zero. The filtered correlation matrix is utilized for calculation of portfolio risk and rebalancing. We introduce Toeplitz approximation to symmetric empirical correlation matrix by using auto-regressive order one, AR(1), signal model. It leads us to an analytical framework where the corresponding eigenvalues and eigenvectors are defined in closed forms. Moreover, we show that discrete cosine transform (DCT) with implementation advantages provides comparable performance as a good approximation to KLT for processing the empirical correlation matrix of a portfolio with highly correlated assets. The energy packing of both transforms degrade for lower values of correlation coefficient. The theoretical reasoning for such a performance is presented. It is concluded that the proposed framework has a potential use for quantitative finance applications.
机译:资产收益率的经验相关矩阵具有其固有的噪声成分。本征分解,也称为Karhunen-Loeve变换(KLT),用于噪声过滤,其中特征值的已标识子集被零替换。过滤后的相关矩阵用于计算投资组合风险和再平衡。我们通过使用自回归阶数AR(1)信号模型,将Toeplitz逼近引入对称经验相关矩阵。它引导我们进入一个分析框架,在该框架中,相应的特征值和特征向量以封闭形式定义。此外,我们证明了具有实施优势的离散余弦变换(DCT)提供了可比的性能,可以很好地逼近KLT,用于处理具有高度相关资产的投资组合的经验相关矩阵。对于较低的相关系数值,两个变换的能量填充都会降低。提出了这种性能的理论依据。结论是,提议的框架在定量金融应用中具有潜在用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号