首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Passive Synthetic Aperture Radar Imaging Using Low-Rank Matrix Recovery Methods
【24h】

Passive Synthetic Aperture Radar Imaging Using Low-Rank Matrix Recovery Methods

机译:使用低秩矩阵恢复方法的被动合成孔径雷达成像

获取原文
获取原文并翻译 | 示例

摘要

We present a novel image formation method for passive synthetic aperture radar (SAR) imaging. The method is an alternative to widely used time difference of arrival (TDOA) or correlation-based backprojection method. These methods work under the assumption that the scene is composed of a single or a few widely separated point targets. The new method overcomes this limitation and can reconstruct heterogeneous scenes with extended targets. We assume that the scene of interest is illuminated by a stationary transmitter of opportunity with known illumination direction, but unknown location. We consider two airborne receivers and correlate the fast-time bistatic measurements at each slow-time. This correlation process maps the tensor product of the scene reflectivity with itself to the correlated measurements. Since this tensor product is a rank-one positive semi-definite operator, the image formation lends itself to low-rank matrix recovery techniques. Taking into account additive noise in bistatic measurements, we formulate the estimation of the rank-one operator as a convex optimization with rank constrain. We present a gradient-descent based iterative reconstruction algorithm and analyze its computational complexity. Extensive numerical simulations show that the new method is superior to correlation-based backprojection in reconstructing extended and distributed targets with better geometric fidelity, sharper edges, and better noise suppression.
机译:我们提出了一种用于被动合成孔径雷达(SAR)成像的新型图像形成方法。该方法是广泛使用的到达时间差(TDOA)或基于相关的反投影方法的替代方法。这些方法在假设场景由单个或几个彼此分开的点目标组成的前提下工作。新方法克服了这一局限性,可以重建具有扩展目标的异构场景。我们假定感兴趣的场景是由静止的机会发射器照亮的,该发射器的光照方向已知,但位置未知。我们考虑两个机载接收器,并在每个慢速时间关联快速双基地测量。该相关过程将场景反射率的张量积与其自身映射到相关测量。由于此张量积是一阶正半定算符,因此图像形成使其适用于低阶矩阵恢复技术。考虑到双站测量中的加性噪声​​,我们将秩运算符的估计公式表示为具有秩约束的凸优化。我们提出了一种基于梯度下降的迭代重建算法,并分析了其计算复杂性。大量的数值模拟表明,该新方法在重建扩展的和分布的目标时具有优于基于相关性的反投影,该目标具有更好的几何保真度,更清晰的边缘和更好的噪声抑制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号