首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >PPDM: A Privacy-Preserving Protocol for Cloud-Assisted e-Healthcare Systems
【24h】

PPDM: A Privacy-Preserving Protocol for Cloud-Assisted e-Healthcare Systems

机译:PPDM:云辅助电子医疗系统的隐私保护协议

获取原文
获取原文并翻译 | 示例

摘要

E-healthcare systems have been increasingly facilitating health condition monitoring, disease modeling and early intervention, and evidence-based medical treatment by medical text mining and image feature extraction. Owing to the resource constraint of wearable mobile devices, it is required to outsource the frequently collected personal health information (PHI) into the cloud. Unfortunately, delegating both storage and computation to the untrusted entity would bring a series of security and privacy issues. The existing work mainly focused on fine-grained privacy-preserving static medical text access and analysis, which can hardly afford the dynamic health condition fluctuation and medical image analysis. In this paper, a secure and efficient privacy-preserving dynamic medical text mining and image feature extraction scheme PPDM in cloud-assisted e-healthcare systems is proposed. Firstly, an efficient privacy-preserving fully homomorphic data aggregation is proposed, which serves the basis for our proposed PPDM. Then, an outsourced disease modeling and early intervention is achieved, respectively by devising an efficient privacy-preserving function correlation matching PPDM1 from dynamic medical text mining and designing a privacy-preserving medical image feature extraction PPDM2. Finally, the formal security proof and extensive performance evaluation demonstrate our proposed PPDM achieves a higher security level (i.e., information-theoretic security for input privacy and adaptive chosen ciphertext attack (CCA2) security for output privacy) in the honest but curious model with optimized efficiency advantage over the state-of-the-art in terms of both computational and communication overhead.
机译:电子医疗系统越来越多地促进健康状况监测,疾病建模和早期干预,以及通过医学文本挖掘和图像特征提取进行循证医学治疗。由于可穿戴移动设备的资源限制,需要将经常收集的个人健康信息(PHI)外包到云中。不幸的是,将存储和计算都委派给不受信任的实体会带来一系列安全和隐私问题。现有的工作主要集中在细粒度的隐私保护静态医学文本的访问和分析上,这几乎无法提供动态的健康状况波动和医学图像分析。本文提出了一种在云辅助电子医疗系统中安全高效的隐私保护动态医学文本挖掘和图像特征提取方案PPDM。首先,提出了一种有效的隐私保护完全同态数据聚合方法,为我们提出的PPDM奠定了基础。然后,分别通过从动态医学文本挖掘中设计与PPDM1相匹配的有效的隐私保护功能相关性,并设计一个隐私保护的医学图像特征提取PPDM2,分别实现了外包的疾病建模和早期干预。最后,正式的安全证明和广泛的性能评估表明,我们提出的PPDM在诚实而好奇的模型中以优化的方式达到了更高的安全级别(即,针对输入隐私的信息理论安全性和针对输出隐私的自适应选择密文攻击(CCA2)安全性)在计算和通信开销方面,它比现有技术具有更高的效率优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号