首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Sub-Pixel Mapping Based on Conditional Random Fields for Hyperspectral Remote Sensing Imagery
【24h】

Sub-Pixel Mapping Based on Conditional Random Fields for Hyperspectral Remote Sensing Imagery

机译:基于条件随机场的高光谱遥感影像亚像素映射

获取原文
获取原文并翻译 | 示例

摘要

Sub-pixel mapping is a useful technique for providing land-cover information at the sub-pixel scale by the use of the input fraction image at a coarse resolution. Some sub-pixel mapping algorithms with strict consideration of the abundance constraint have difficulty in obtaining a satisfactory performance in sub-pixel mapping since the fraction image obtained by spectral unmixing always contains errors. In this paper, in order to make full use of the input fraction image and alleviate the effect of fraction errors, a sub-pixel mapping algorithm based on conditional random fields (CRFSM) is proposed for hyperspectral remote sensing imagery. The CRFSM algorithm fuses the local spatial prior at the fine scale and the downscaled coarse fraction at the coarse scale by potential functions to obtain more detailed land-cover distribution information. The local spatial prior models the local spatial structure to obtain the local land-cover features at the fine scale. The downscaled coarse fraction considers the fraction values to maintain the holistic land-cover features at the coarse scale. In addition, the abundance constraint is considered as a soft constraint by the probability class determination strategy in the CRFSM algorithm, to help with the class label determination of sub-pixels and alleviate the effect of the fraction errors and noise. The experimental results with two synthetic hyperspectral images and a real Nuance hyperspectral image show that the proposed sub-pixel mapping algorithm has a competitive performance in both the quantitative and qualitative evaluations, compared with the other state-of-the-art sub-pixel mapping algorithms.
机译:子像素映射是一种有用的技术,可通过以较粗分辨率使用输入分数图像来提供子像素规模的土地覆盖信息。某些严格考虑丰度约束的子像素映射算法在子像素映射中难以获得令人满意的性能,因为通过光谱分解得到的分数图像始终包含错误。为了充分利用输入的分数图像并减轻分数误差的影响,提出了一种基于条件随机场(CRFSM)的亚像素映射算法用于高光谱遥感影像。 CRFSM算法通过潜在函数将细尺度的局部空间先验和粗尺度的缩减尺度的粗分数融合在一起,以获得更详细的土地覆盖分布信息。局部空间先验模型对局部空间结构进行建模以获得精细规模的局部土地覆盖特征。缩减后的粗糙分数将考虑分数值,以将整体土地覆盖特征维持在粗糙尺度。此外,CRFSM算法中的概率类别确定策略将丰度约束视为软约束,以帮助确定子像素的类别标签并减轻分数误差和噪声的影响。两个合成的高光谱图像和一个真实的Nuance高光谱图像的实验结果表明,与其他最新的亚像素映射相比,所提出的亚像素映射算法在定量和定性评估方面均具有竞争优势算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号