首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Effective Connectivity Analysis in Brain Networks: A GPU-Accelerated Implementation of the Cox Method
【24h】

Effective Connectivity Analysis in Brain Networks: A GPU-Accelerated Implementation of the Cox Method

机译:脑网络中的有效连通性分析:Cox方法的GPU加速实现

获取原文
获取原文并翻译 | 示例

摘要

The observation of interactions between neurons of a network can reveal important information about how information is processed within that network. Such observation can be established with the analysis of causality between the activities of the different neurons in the network. This analysis is called effective connectivity analysis. However, methods for such analysis are either computationally heavy for daily use or too inaccurate for making reliable analyses. Cox method produces reliable analysis, but the computation takes hours on CPUs, making it slow to use on research. In this paper, two algorithms are presented that speed up analysis of Cox method by parallelizing the computation on a graphical processing unit (GPU) with the help of a Compute Unified Device Architecture platform. Both algorithms are evaluated according to the network size and recording duration. The interest of proposing GPU implementations is in gaining the computation time but another important interest is that such implementation requires rethinking the algorithm in different ways than as the sequential implementation. This rethinking itself brings new optimization possibilities, e.g. by employing OpenCL. Utilizing this accelerated implementation, the Cox method is then applied on an experimental dataset from CRCNS in a personal computer. This should facilitate observations of biological neural network organizations that can provide new insights to improve understanding of memory, learning and intelligence.
机译:对网络神经元之间相互作用的观察可以揭示有关在该网络中如何处理信息的重要信息。可以通过分析网络中不同神经元活动之间的因果关系来建立这种观察。该分析称为有效连通性分析。然而,这种分析的方法要么在日常使用中计算量大,要么对于进行可靠的分析而言太不准确。 Cox方法产生可靠的分析结果,但是计算需要花费数小时的CPU时间,这使得研究工作使用起来很慢。本文提出了两种算法,它们可以借助Compute Unified Device Architecture平台在图形处理单元(GPU)上并行化计算,从而加快Cox方法的分析速度。两种算法均根据网络规模和记录持续时间进行评估。提出GPU实现的兴趣在于获得计算时间,但另一个重要的兴趣在于,这种实现要求以不同于顺序实现的方式重新思考算法。这种重新思考本身带来了新的优化可能性,例如通过使用OpenCL。利用这种加速的实现,然后将Cox方法应用于来自个人计算机中CRCNS的实验数据集。这应该有助于对生物神经网络组织的观察,这些观察可以提供新的见解,以增进对记忆,学习和智力的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号