首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Beyond Low Rank + Sparse: Multiscale Low Rank Matrix Decomposition
【24h】

Beyond Low Rank + Sparse: Multiscale Low Rank Matrix Decomposition

机译:超越低秩+稀疏:多尺度低秩矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multiscale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multiscale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multiscale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multiscale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multiscale modeling of the dynamic contrast enhanced magnetic resonance imaging, and collaborative filtering exploiting age information.
机译:我们对最近的低秩+稀疏矩阵分解进行自然概括,并考虑将矩阵分解成多个尺度的分量。由于数据矩阵通常在多个尺度上表现出局部相关性,因此在实践中很容易激发这种分解。具体而言,我们提出了一种多尺度低秩建模,该模型将数据矩阵表示为块大小越来越小的逐块低秩矩阵之和。然后,我们考虑将数据矩阵分解为其多尺度低秩分量的逆问题,并通过凸公式解决该问题。从理论上讲,我们表明在各种不相干条件下,凸程序可以准确地或近似地恢复多尺度低秩分量。实际上,我们提供有关选择正则化参数的指南,并结合循环旋转以减少阻塞伪像。实验表明,多尺度低秩分解比常规低秩方法提供了更直观的分解,并证明了其在四个应用中的有效性,包括面部图像的照明归一化,监视视频的运动分离,动态对比度增强磁共振的多尺度建模成像,以及利用年龄信息进行协作过滤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号