首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Joint Learning of Distance Metric and Query Model for Posteriorgram-Based Keyword Search
【24h】

Joint Learning of Distance Metric and Query Model for Posteriorgram-Based Keyword Search

机译:基于后验词的关键词搜索距离度量与查询模型的联合学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel approach to keyword search (KWS) in low-resource languages, which provides an alternative method for retrieving the terms of interest, especially for the out of vocabulary (OOV) ones. Our system incorporates the techniques of query-by-example retrieval tasks into KWS and conducts the search by means of the subsequence dynamic time warping (sDTW) algorithm. For this, text queries are modeled as sequences of feature vectors and used as templates in the search. A Siamese neural network-based model is trained to learn a frame-level distance metric to be used in sDTW and the proper query model frame representations for this learned distance. Experiments conducted on Intelligence Advanced Research Projects Activity Babel Program's Turkish, Pashto, and Zulu datasets demonstrate the effectiveness of our approach. In each of the languages, the proposed system outperforms the large vocabulary continuous speech recognition (LVCSR) based baseline for OOV terms. Furthermore, the fusion of the proposed system with the baseline system provides an average relative actual term weighted value (ATWV) improvement of 13.9% on all terms and, more significantly, the fusion yields an average relative ATWV improvement of 154.5% on OOV terms. We show that this new method can be used as an alternative to conventional LVCSR-based KWS systems, or in combination with them, to achieve the goal of closing the gap between OOV and in-vocabulary retrieval performances.
机译:在本文中,我们提出了一种在资源匮乏的语言中进行关键字搜索(KWS)的新颖方法,该方法为检索感兴趣的术语(尤其是词汇量(OOV)的术语)提供了另一种方法。我们的系统将按实例查询任务的技术结合到KWS中,并通过子序列动态时间规整(sDTW)算法进行搜索。为此,将文本查询建模为特征向量序列,并在搜索中用作模板。训练了一个基于暹罗神经网络的模型,以学习要在sDTW中使用的帧级距离度量标准以及该学习距离的正确查询模型帧表示形式。在情报高级研究计划活动Babel计划的土耳其语,普什图语和祖鲁语数据集上进行的实验证明了我们方法的有效性。在每种语言中,建议的系统都优于基于大词汇量连续语音识别(LVCSR)的OOV术语基准。此外,所提出的系统与基准系统的融合在所有方面均提供了平均平均相对实际术语加权值(ATWV)改善了13.9%,更重要的是,融合带来了OOV方面的平均相对ATWV改善了154.5%。我们表明,该新方法可以用作基于LVCSR的常规KWS系统的替代方法,或与之组合使用,以达到缩小OOV和语音检索性能之间差距的目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号