首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Multitask Feature Learning for Low-Resource Query-by-Example Spoken Term Detection
【24h】

Multitask Feature Learning for Low-Resource Query-by-Example Spoken Term Detection

机译:多资源特征学习,以低资源示例查询口语查询

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel technique that learns a low-dimensional feature representation from unlabeled data of a target language, and labeled data from a nontarget language. The technique is studied as a solution to query-by-example spoken term detection (QbE-STD) for a low-resource language. We extract low-dimensional features from a bottle-neck layer of a multitask deep neural network, which is jointly trained with speech data from the low-resource target language and resource-rich nontarget language. The proposed feature learning technique aims to extract acoustic features that offer phonetic discriminability. It explores a new way of leveraging cross-lingual speech data to overcome the resource limitation in the target language. We conduct QbE-STD experiments using the dynamic time warping distance of the multitask bottle-neck features between the query and the search database. The QbE-STD process does not rely on an automatic speech recognition pipeline of the target language. We validate the effectiveness of multitask feature learning through a series of comparative experiments.
机译:我们提出了一种新技术,该技术从目标语言的未标记数据和非目标语言的标记数据中学习低维特征表示。研究了该技术,作为一种针对资源匮乏的语言的示例查询口语检测(QbE-STD)的解决方案。我们从多任务深度神经网络的瓶颈层中提取低维度特征,该深度层网络与来自资源匮乏的目标语言和资源丰富的非目标语言的语音数据共同训练。提出的特征学习技术旨在提取提供语音可辨性的声学特征。它探索了一种利用跨语言语音数据克服目标语言资源限制的新方法。我们使用查询和搜索数据库之间的多任务瓶颈特征的动态时间规整距离进行QbE-STD实验。 QbE-STD过程不依赖于目标语言的自动语音识别管道。我们通过一系列比较实验验证了多任务特征学习的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号