首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Robust Spatial Filtering With Graph Convolutional Neural Networks
【24h】

Robust Spatial Filtering With Graph Convolutional Neural Networks

机译:图卷积神经网络的鲁棒空间滤波

获取原文
获取原文并翻译 | 示例

摘要

Convolutional neural networks (CNNs) have recently led to incredible breakthroughs on a variety of pattern recognition problems. Banks of finite-impulse response filters are learned on a hierarchy of layers, each contributing more abstract information than the previous layer. The simplicity and elegance of the convolutional filtering process makes them perfect for structured problems, such as image, video, or voice, where vertices are homogeneous in the sense of number, location, and strength of neighbors. The vast majority of classification problems, for example in the pharmaceutical, homeland security, and financial domains are unstructured. As these problems are formulated into unstructured graphs, the heterogeneity of these problems, such as number of vertices, number of connections per vertex, and edge strength, cannot be tackled with standard convolutional techniques. We propose a novel neural learning framework that is capable of handling both homogeneous and heterogeneous data while retaining the benefits of traditional CNN successes. Recently, researchers have proposed variations of CNNs that can handle graph data. In an effort to create learnable filter banks of graphs, these methods either induce constraints on the data or require preprocessing. As opposed to spectral methods, our framework, which we term Graph-CNNs, defines filters as polynomials of functions of the graph adjacency matrix. Graph-CNNs can handle both heterogeneous and homogeneous graph data, including graphs having entirely different vertex or edge sets. We perform experiments to validate the applicability of Graph-CNNs to a variety of structured and unstructured classification problems and demonstrate state-of-the-art results on document and molecule classification problems.
机译:卷积神经网络(CNN)最近在各种模式识别问题上取得了令人难以置信的突破。在层的层次结构上学习了有限冲激响应滤波器组,每个层比前一层贡献了更多的抽象信息。卷积滤波过程的简单性和优雅性使其非常适合结构化问题,例如图像,视频或语音,在顶点的数量,位置和邻居强度方面,顶点是同质的。绝大多数分类问题,例如在制药,国土安全和金融领域,都是非结构化的。由于这些问题被公式化为非结构化图,因此这些问题的异质性(例如,顶点数,每个顶点的连接数和边缘强度)无法用标准卷积技术解决。我们提出了一种新颖的神经学习框架,该框架能够处理同质和异类数据,同时保留传统CNN成功的好处。最近,研究人员提出了可以处理图形数据的CNN变体。为了创建可学习的图形过滤器库,这些方法要么导致对数据的约束,要么需要进行预处理。与频谱方法相反,我们称之为Graph-CNN的框架将过滤器定义为图邻接矩阵函数的多项式。 Graph-CNN可以处理异构和同类图数据,包括具有完全不同的顶点或边集的图。我们进行实验以验证Graph-CNN在各种结构化和非结构化分类问题中的适用性,并展示有关文档和分子分类问题的最新结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号