首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Acceleration of Deep Convolutional Neural Networks Using Adaptive Filter Pruning
【24h】

Acceleration of Deep Convolutional Neural Networks Using Adaptive Filter Pruning

机译:使用自适应滤波修剪加速深卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

While convolutional neural networks (CNNs) have achieved remarkable performance on various supervised and unsupervised learning tasks, they typically consist of a massive number of parameters. This results in significant memory requirements as well as a computational burden. Consequently, there is a growing need for filter-level pruning approaches for compressing CNN based models that not only reduce the total number of parameters but reduce the overall computation as well. We present a new min-max framework for the filter-level pruning of CNNs. Our framework jointly prunes and fine-tunes CNN model parameters, with an adaptive pruning rate, while maintaining the model’s predictive performance. Our framework consists of two modules: (1) An adaptive filter pruning (AFP) module, which minimizes the number of filters in the model; and (2) A pruning rate controller (PRC) module, which maximizes the accuracy during pruning. In addition, we also introduce orthogonality regularization in training of CNNs to reduce redundancy across filters of a particular layer. In the proposed approach, we prune the least important filters and, at the same time, reduce the redundancy level in the model by using orthogonality constraints during training. Moreover, unlike most previous approaches, our approach allows directly specifying the desired error tolerance instead of the pruning level. We perform extensive experiments for object classification (LeNet, VGG, MobileNet, and ResNet) and object detection (SSD, and Faster-RCNN) over benchmarked datasets such as MNIST, CIFAR, GTSDB, ImageNet, and MS-COCO. We also present several ablation studies to validate the proposed approach. Our compressed models can be deployed at run-time, without requiring any special libraries or hardware. Our approach reduces the number of parameters of VGG-16 by an impressive factor of 17.5X, and the number of FLOPS by 6.43X, with no loss of accuracy, significantly outperforming other state-of-the-art filter pruning methods.
机译:虽然卷积神经网络(CNNS)在各种监督和无监督的学习任务中取得了显着性能,但它们通常由大量的参数组成。这导致显着的内存要求以及计算负担。因此,对于压缩基于CNN的模型的滤波器级修剪方法越来越需要,这不仅可以减少参数总数,而且还减少了整个计算。我们为CNNS的滤波器级修剪提供了一个新的Min-Max框架。我们的框架共同修剪和微调CNN模型参数,具有自适应修剪率,同时保持模型的预测性能。我们的框架由两个模块组成:(1)自适应滤波器修剪(AFP)模块,可最大限度地减少模型中的过滤器数量; (2)修剪率控制器(PRC)模块,可在修剪期间最大化精度。此外,我们还在CNN的训练中引入正交正常化,以减少特定层过滤器的冗余。在提出的方法中,我们通过在训练期间使用正交限制来修剪最不重要的过滤器,并同时降低模型中的冗余级别。此外,与大多数先前的方法不同,我们的方法允许直接指定所需的误差容限而不是修剪级别。我们对对象分类(Lenet,VGG,MobileNet和Reset)和对象检测(SSD,以及更快的RCNN)进行广泛的实验,例如MNIST,CIFAR,GTSDB,ImageNet和MS-Coco等基准数据集。我们还提出了几项消融研究以验证提出的方法。我们的压缩模​​型可以在运行时部署,而无需任何特殊的库或硬件。我们的方法通过1​​7.5倍的令人印象深刻的因子减少了VGG-16的参数数量,以及6.43倍的絮凝物的数量,没有准确性损失,显着优于其他最先进的滤光器修剪方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号