首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms
【24h】

Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms

机译:加速MRI密集的复发性神经网络:优化算法的历史认识展开

获取原文
获取原文并翻译 | 示例
       

摘要

Inverse problems for accelerated MRI typically incorporate domain-specific knowledge about the forward encoding operator in a regularized reconstruction framework. Recently physics-driven deep learning (DL) methods have been proposed to use neural networks for data-driven regularization. These methods unroll iterative optimization algorithms to solve the inverse problem objective function, by alternating between domain-specific data consistency and data-driven regularization via neural networks. The whole unrolled network is then trained end-to-end to learn the parameters of the network. Due to simplicity of data consistency updates with gradient descent steps, proximal gradient descent (PGD) is a common approach to unroll physics-driven DL reconstruction methods. However, PGD methods have slow convergence rates, necessitating a higher number of unrolled iterations, leading to memory issues in training and slower reconstruction times in testing. Inspired by efficient variants of PGD methods that use a history of the previous iterates, in this article, we propose a history-cognizant unrolling of the optimization algorithm with dense connections across iterations for improved performance. In our approach, the gradient descent steps are calculated at a trainable combination of the outputs of all the previous regularization units. We also apply this idea to unrolling variable splitting methods with quadratic relaxation. Our results in reconstruction of the fastMRI knee dataset show that the proposed history-cognizant approach reduces residual aliasing artifacts compared to its conventional unrolled counterpart without requiring extra computational power or increasing reconstruction time.
机译:加速MRI的逆问题通常在正则化重建框架中包含关于前向编码运算符的域特定知识。最近,已经提出了物理驱动的深度学习(DL)方法来利用神经网络进行数据驱动正规化。这些方法展开迭代优化算法以通过神经网络交替在域特定的数据一致性和数据驱动正则化之间交替来解决逆问题目标函数。然后,整个展开的网络训练结束到底以学习网络的参数。由于具有梯度下降步骤的数据一致性更新的简单性,近端梯度下降(PGD)是展开物理驱动的DL重建方法的常见方法。然而,PGD方法具有缓慢的收敛速率,需要更高数量的展开迭代,导致训练中的内存问题和在测试中的重建时间较慢。灵感灵感来自使用先前迭代历史的PGD方法的有效变体,在本文中,我们提出了一种历史认识到优化算法的优化算法,跨迭代的密集连接进行改进的性能。在我们的方法中,梯度下降步骤以所有先前正则化单元的输出的培训组合计算。我们还将这个想法应用于具有二次放松的可变分裂方法。我们的成果在重建FastMri膝关节数据集表明,与其传统的展开的对应相比,所提出的历史认识方法减少了残差叠片伪像,而无需额外的计算能力或增加重建时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号