首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >MC360IQA: A Multi-channel CNN for Blind 360-Degree Image Quality Assessment
【24h】

MC360IQA: A Multi-channel CNN for Blind 360-Degree Image Quality Assessment

机译:MC360IQA:用于盲360度图像质量评估的多通道CNN

获取原文
获取原文并翻译 | 示例

摘要

360-degree images/videos have been dramatically increasing in recent years. The characteristic of omnidirectional-view results in high resolution of 360-degree images/videos, which makes them difficult to be transported and stored. To deal with the problem, video coding technologies are used to compress the omnidirectional content but they will introduce the compression distortion. Therefore, it is important to study how popular coding technologies affect the quality of 360-degree images. In this paper, we present a study on both subjective and objective quality assessment of compressed virtual reality (VR) images. We first build a compressed VR image quality (CVIQ) database including 16 reference images and 528 compressed ones with three prevailing coding technologies. Then, we propose a multi-channel convolution neural network (CNN) for blind 360-degree image quality assessment (MC360IQA). To be consistent with the visual content seen in the VR device, we project each 360-degree image into six viewport images, which are adopted as inputs of the proposed model. MC360IQA consists of two parts, a multi-channel CNN and an image quality regressor. The multi-channel CNN includes six parallel hyper-ResNet34 networks, where the hyper structure is used to incorporate the features from intermediate layers. The image quality regressor fuses the features and regresses them to final scores. The experimental results show that our model achieves the best performance among the state-of-art full-reference (FR) and no-reference (NR) image quality assessment (IQA) models on the CVIQ database and other available 360-degree IQA database.
机译:近年来,360度图像/视频在显着增加。全向视图的特性导致高分辨率为360度图像/视频,这使得它们难以被运输和存储。要处理问题,视频编码技术用于压缩全向内容,但它们将引入压缩失真。因此,重要的是研究流行的编码技术如何影响360度图像的质量。在本文中,我们展示了对压缩虚拟现实(VR)图像的主观和客观质量评估的研究。我们首先构建压缩的VR图像质量(CVIQ)数据库,包括16个参考图像和528压缩的数据库,具有三种主要的编码技术。然后,我们提出了一种多通道卷积神经网络(CNN),用于盲360度图像质量评估(MC360IQA)。要与VR设备中看到的视觉内容一致,我们将每个360度图像投影为六个视口图像,这被采用为所提出的模型的输入。 MC360IQA由两个部分,多通道CNN和图像质量回归组成。多通道CNN包括六个并行超级resnet34网络,其中超结构用于包含中间层的特征。图像质量regressor融合了功能并将其退回到最终分数。实验结果表明,我们的模型在CVIQ数据库和其他可用的360度IQA数据库中实现了最先进的全址(FR)和NR)和NOR)图像质量评估(IQA)模型的最佳性能。 。

著录项

  • 来源
  • 作者单位

    Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai 200240 Peoples R China|Shanghai Jiao Tong Univ Inst Image Commun & Informat Proc Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai 200240 Peoples R China|Shanghai Jiao Tong Univ Inst Image Commun & Informat Proc Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai 200240 Peoples R China|Shanghai Jiao Tong Univ Inst Image Commun & Informat Proc Shanghai 200240 Peoples R China;

    Beijing Univ Technol Fac Informat Technol Beijing Key Lab Computat Intelligence & Intellige Beijing 100124 Peoples R China;

    Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai 200240 Peoples R China|Shanghai Jiao Tong Univ Inst Image Commun & Informat Proc Shanghai 200240 Peoples R China;

    Peking Univ Inst Digital Media Sch Elect Engn & Comp Sci Beijing 100871 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image quality; Image coding; Distortion; Streaming media; Quality assessment; Indexes; 360-degree images; image quality assessment; convolution neural network; hyper-structure;

    机译:图像质量;图像编码;失真;流媒体;质量评估;索引;360度图像;图像质量评估;卷积神经网络;超结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号