首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Unsupervised Change Detection in SAR Image Based on Gauss-Log Ratio Image Fusion and Compressed Projection
【24h】

Unsupervised Change Detection in SAR Image Based on Gauss-Log Ratio Image Fusion and Compressed Projection

机译:基于高斯对数比图像融合和压缩投影的SAR图像无监督变化检测

获取原文
获取原文并翻译 | 示例

摘要

Multitemporal synthetic aperture radar (SAR) images have been successfully used for the detection of different types of terrain changes. SAR image change detection has recently become a challenge problem due to the existence of speckle and the complex mixture of terrain environment. This paper presents a novel unsupervised change detection method in SAR images based on image fusion strategy and compressed projection. First, a Gauss-log ratio operator is proposed to generate a difference image. In order to obtain a better difference map, image fusion strategy is applied using complementary information from Gauss-log ratio and log-ratio difference image. Second, nonsubsampled contourlet transform (NSCT) is used to reduce the noise of the fused difference image, and compressed projection is employed to extract feature for each pixel. The final change detection map is obtained by partitioning the feature vectors into “changed” and “unchanged” classes using simple k-means clustering. Experiment results show that the proposed method is effective for SAR image change detection in terms of shape preservation of the detected change portion and the numerical results.
机译:多时相合成孔径雷达(SAR)图像已成功用于检测不同类型的地形变化。由于斑点的存在和地形环境的复杂混合,SAR图像变化检测最近已成为一个挑战性问题。提出了一种基于图像融合策略和压缩投影的SAR图像无监督变化检测方法。首先,提出了一个高斯对数比算子来产生差分图像。为了获得更好的差分图,使用了来自高斯对数比和对数比差分图像的补充信息来应用图像融合策略。其次,使用非下采样轮廓波变换(NSCT)来减少融合差分图像的噪声,并使用压缩投影来提取每个像素的特征。通过使用简单的k均值聚类将特征向量划分为“已更改”和“未更改”类别,可以获取最终的更改检测图。实验结果表明,该方法在检测变化部分的形状保持和数值结果方面,对于SAR图像变化的检测是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号