【24h】

A Review of Nonlinear Hyperspectral Unmixing Methods

机译:非线性高光谱分解方法综述

获取原文
获取原文并翻译 | 示例

摘要

In hyperspectral unmixing, the prevalent model used is the linear mixing model, and a large variety of techniques based on this model has been proposed to obtain endmembers and their abundances in hyperspectral imagery. However, it has been known for some time that nonlinear spectral mixing effects can be a crucial component in many real-world scenarios, such as planetary remote sensing, intimate mineral mixtures, vegetation canopies, or urban scenes. While several nonlinear mixing models have been proposed decades ago, only recently there has been a proliferation of nonlinear unmixing models and techniques in the signal processing literature. This paper aims to give an historical overview of the majority of nonlinear mixing models and nonlinear unmixing methods, and to explain some of the more popular techniques in detail. The main models and techniques treated are bilinear models, models for intimate mineral mixtures, radiosity-based approaches, ray tracing, neural networks, kernel methods, support vector machine techniques, manifold learning methods, piece-wise linear techniques, and detection methods for nonlinearity. Furthermore, we provide an overview of several recent developments in the nonlinear unmixing literature that do not belong into any of these categories.
机译:在高光谱解混合中,使用的流行模型是线性混合模型,并且已经提出了基于该模型的多种技术来获取高光谱图像中的端成员及其丰度。然而,一段时间以来,人们已经知道非线性光谱混合效应可能是许多现实世界场景中的关键组成部分,例如行星遥感,紧密的矿物混合物,植被冠层或城市场景。尽管几十年前已经提出了几种非线性混合模型,但直到最近才出现了信号处理文献中非线性分解模型和技术的激增。本文旨在对大多数非线性混合模型和非线性分解方法进行历史回顾,并详细解释一些较流行的技术。所处理的主要模型和技术是双线性模型,紧密矿物混合物的模型,基于光能传递的方法,射线追踪,神经网络,核方法,支持向量机技术,流形学习方法,分段线性技术和非线性检测方法。此外,我们概述了非线性解混文献中的一些最新进展,这些研究不属于这些类别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号