首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Calibration of Aboveground Forest Carbon Stock Models for Major Tropical Forests in Central Sumatra Using Airborne LiDAR and Field Measurement Data
【24h】

Calibration of Aboveground Forest Carbon Stock Models for Major Tropical Forests in Central Sumatra Using Airborne LiDAR and Field Measurement Data

机译:利用机载激光雷达和野外测量数据对苏门答腊中部主要热带森林的地上森林碳储量模型进行标定

获取原文
获取原文并翻译 | 示例

摘要

Despite substantial policy attention, tropical forests in Southeast Asian region are releasing large amount of carbon to the atmosphere due to accelerating deforestation. Accurately determining forest statistics and characterizing aboveground forest carbon stocks (AFCSs) are always challenging in the region. In order to develop more accurate estimates of AFCS, the present study collected airborne LiDAR and field measurements data and calibrated AFCS models to estimate carbon stock in the tropical forests in central Sumatra. The study region consists of natural forests, including peat swamp, dry moist, regrowth, and mangrove, and plantation forests, including rubber, acacia, oil palm, and coconut. To cover the different forest types, 60 field plots of 1 ha in size were inventoried. Eight transects crossing these field plots were acquired to calibrate the LiDAR to AFCS models. The AFCS values for the field plots ranged from 4 to 161 Mg ha. General models were fitted without considering forest types, whereas a specific model was fitted for each specific forest type. Five alternative general models with different LiDAR metrics were calibrated with model performance expressed as R ranging from 0.73 to 0.87 and root-meansquare error (RMSE) values ranging from 17.4 to 25.0 Mg ha . Seven forest-specific AFCS models were calibrated for different forest types, with R values ranging from 0.72 to 0.97 and RMSE values ranging from 1.4 to 10.7 Mg ha. The performance of each model was cross-validated by iteratively removing one data point. While forest-specific models provide better AFCS estimates, the general models are still useful when forest types are ambiguous.
机译:尽管有相当多的政策关注,但由于森林砍伐加速,东南亚地区的热带森林仍向大气释放大量碳。在该地区,准确确定森林统计数据并确定地上森林碳储量(AFCS)始终是一项挑战。为了建立更准确的AFCS估算,本研究收集了机载LiDAR和现场测量数据,并校准了AFCS模型以估算苏门答腊中部热带森林的碳储量。研究区域包括天然森林,包括泥炭沼泽,干燥潮湿,再生长和红树林,以及人工林,包括橡胶,阿拉伯树胶,油棕和椰子。为了涵盖不同的森林类型,调查了60个1公顷大小的田地。采集了穿过这些野地图的八个样条,以将LiDAR校准为AFCS模型。现场图的AFCS值范围为4到161 Mg ha。在不考虑森林类型的情况下拟合了常规模型,而对每种特定森林类型都拟合了特定模型。校准了五个具有不同LiDAR度量标准的替代通用模型,模型性能表示为R,范围为0.73至0.87,均方根误差(RMSE)值范围为17.4至25.0 Mg ha。针对不同的森林类型对七个特定于森林的AFCS模型进行了校准,R值介于0.72至0.97之间,RMSE值介于1.4至10.7 Mg ha之间。通过反复删除一个数据点,对每个模型的性能进行了交叉验证。尽管特定于森林的模型可以提供更好的AFCS估计,但是当森林类型不明确时,常规模型仍然有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号