首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Multidimensional Striping Noise Compensation in Hyperspectral Imaging: Exploiting Hypercubes’ Spatial, Spectral, and Temporal Redundancy
【24h】

Multidimensional Striping Noise Compensation in Hyperspectral Imaging: Exploiting Hypercubes’ Spatial, Spectral, and Temporal Redundancy

机译:高光谱成像中的多维条带噪声补偿:利用超立方体的空间,光谱和时间冗余

获取原文
获取原文并翻译 | 示例

摘要

In this paper, two novel multidimensional striping noise compensation (SNC) algorithms for push-broom hyperspectral cameras (PBHCs) have been developed. The SNC algorithms employ a novel pixelwise, affine image-degradation model, which assumes that the striping noise (SN) parameters are spatially uncorrelated, spectrally independent, and decoupled from the camera's spectral response. Algorithms simultaneously exploit the spatial and temporal information contained in an image as well as the spectral information contained at adjacent spectral images. The multidimensional SNC algorithms were successfully tested on real hyperspectral data from both a commercial PBHC operating in the spectral range of 400-1000 nm, at a resolution of 1.04 nm, and the ESA earth-observing CHRIS/PROBA sensor.
机译:在本文中,已经开发了两种新颖的用于推扫式高光谱相机(PBHC)的多维条纹噪声补偿(SNC)算法。 SNC算法采用新颖的逐像素仿射图像退化模型,该模型假定条带噪声(SN)参数在空间上不相关,在光谱上不相关且与相机的光谱响应不相关。算法同时利用图像中包含的空间和时间信息以及相邻光谱图像中包含的光谱信息。多维SNC算法已成功地测试了实际的高光谱数据,这些数据来自在1.00至4.04 nm光谱范围内以400-1000 nm光谱范围运行的商用PBHC和ESA地球观测CHRIS / PROBA传感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号