首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Cloud Removal in Image Time Series Through Sparse Reconstruction From Random Measurements
【24h】

Cloud Removal in Image Time Series Through Sparse Reconstruction From Random Measurements

机译:通过随机测量的稀疏重建去除图像时间序列中的云

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a cloud removal algorithm for scenes within a satellite image time series based on synthetization of the affected areas via sparse reconstruction. The high spectrotemporal dimensionality of time series allows applying pixel-based sparse reconstruction techniques efficiently, estimating the values below a cloudy area by observing the spectral evolution in time of pixels in cloud-free areas. The process implicitly compensates the overall atmospheric interactions affecting a given image, and it is possible even if only one acquisition is available for a given period of time. The dictionary, on the basis of which the data are reconstructed, is selected randomly from the available image elements in the time series. This increases the degree of automation of the process, if the area containing clouds and their shadows is given. Favorable comparisons with similar methods and applications to supervised classification and change detection show that the proposed algorithm restores images locally contaminated by clouds and their shadows in a satisfactory and efficient way.
机译:在本文中,我们提出了一种基于稀疏重建的受影响区域合成方法,用于卫星图像时间序列中场景的云去除算法。时间序列的高光谱时间维数允许有效地应用基于像素的稀疏重建技术,通过观察无云区域中像素随时间的光谱演化来估计多云区域以下的值。该过程隐式补偿了影响给定图像的整体大气相互作用,并且即使在给定的时间段内只有一个采集可用,也是有可能的。从时间序列中的可用图像元素中随机选择要重构数据的字典。如果给出了包含云及其阴影的区域,则这将提高过程的自动化程度。在监督分类和变化检测中与类似方法和应用的有利比较表明,该算法以令人满意和有效的方式恢复了被云及其阴影局部污染的图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号