首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Producing Subpixel Resolution Thematic Map From Coarse Imagery: MAP Algorithm-Based Super-Resolution Recovery
【24h】

Producing Subpixel Resolution Thematic Map From Coarse Imagery: MAP Algorithm-Based Super-Resolution Recovery

机译:从粗图像中生成亚像素分辨率主题图:基于MAP算法的超分辨率恢复

获取原文
获取原文并翻译 | 示例

摘要

Subpixel mapping (SPM) of hyperspectral remote sensing imagery is a promising technique for deriving fine mapping result by classification at fine spatial resolution. There is a type of algorithm for SPM, namely, the soft-then-hard SPM (STHSPM) algorithm that first estimates soft attribute values for land cover classes at subpixel level and then allocates classes for subpixel according to the soft attribute values. However, the fraction images derived from spectral unmixing are of less prior information of original hyperspectral remote sensing imagery and there are lots of errors in SPM result due to the limitation of spectral unmixing technology currently available. In this paper, a framework based on subpixel resolution thematic map, namely, super-resolution then classification (STC) is proposed to improve mapping result. In the proposed framework, a maximum a posteriori (MAP) model associated with the endmembers of interest (EOI), namely, T-MAP-SR is applied to the original coarse imagery to derive a high-resolution imagery with generous prior information. Then fine mapping result can be derived from the high-spatial resolution imagery by the available classification methods. Experiments show that the proposed framework can produce higher mapping accuracy result and protect the classes of interest (COI).
机译:高光谱遥感图像的亚像素映射(SPM)是一种有前景的技术,可通过在精细空间分辨率下进行分类来得出精细映射结果。有一种用于SPM的算法,即先软后硬SPM(STHSPM)算法,该算法首先估算子像素级别的土地覆盖类别的软属性值,然后根据该软属性值为子像素分配类别。然而,从光谱分解得到的分数图像的原始高光谱遥感影像的先验信息较少,并且由于目前可用的光谱分解技术的局限性,SPM结果存在很多误差。本文提出了一种基于亚像素分辨率专题图的框架,即超分辨率然后分类(STC),以提高映射效果。在提出的框架中,将与感兴趣的最终成员(EOI)相关的最大后验(MAP)模型(即T-MAP-SR)应用于原始粗糙图像,以导出具有大量先验信息的高分辨率图像。然后可以通过可用的分类方法从高空间分辨率图像中得出精细的映射结果。实验表明,提出的框架可以产生较高的制图精度结果,并可以保护感兴趣的类别(COI)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号