首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Microwave Signatures of Snow Cover Using Numerical Maxwell Equations Based on Discrete Dipole Approximation in Bicontinuous Media and Half-Space Dyadic Green's Function
【24h】

Microwave Signatures of Snow Cover Using Numerical Maxwell Equations Based on Discrete Dipole Approximation in Bicontinuous Media and Half-Space Dyadic Green's Function

机译:基于离散连续偶极近似和半空间二进格林函数的离散麦克斯方程数值麦克斯韦方程的积雪的微波特征

获取原文
获取原文并翻译 | 示例

摘要

A three-dimensional snowpack scattering and emission model is developed by numerically solving Maxwell's equations (NMM3D) over the entire snowpack on an underlying half-space. The solutions are crucial to microwave remote sensing that requires the preservation of coherent phase information. The heterogeneous snowpack is represented as a bicontinuous medium. Effects of the underlying half-space are included through a half-space Green's function in a volume integral equation formulation. The volume integral equation is then solved using the discrete dipole approximation. The fast Fourier transform is effectuated for all three dimensions with half-space Green's function rather than the conventional free space Green's function. To overcome the snow volume truncation in the finite numerical calculations, periodic boundary conditions are applied in the lateral extent. Thus, in NMM3D, the physical microwave scattering and emission problem is solved without using any radiative transfer equations. In this formulation, the scattering matrix of the snowpack accounts for both the magnitude and phase. The NMM3D simulations are demonstrated at Ku-band frequency for a snow cover up to 25-cm thick. The results are applicable to remote sensing of snow over sea ice, and thin layers of terrestrial snow. Quantitative values of backscattering and bistatic scattering coefficients are derived for active microwave remote sensing, and brightness temperatures for passive microwave remote sensing. The full wave simulation results are compared with those of the partially coherent approach of the dense media radiative transfer (DMRT). The NMM3D results capture effects of backscattering enhancement and coherent layering that are missed in DMRT. The full wave solution to Maxwell equations is important to advance radar polarimetry, interferometry, and tomography that require the preservation of the full phase information and all interface interactions for applications to radar remote sensing of snow cover on land and on sea ice.
机译:通过数值求解Maxwell方程组(NMM3D)(位于下半空间上的整个积雪),建立了三维积雪散射和发射模型。该解决方案对于需要保持相干相位信息的微波遥感至关重要。异构积雪表示为双连续介质。在体积积分方程公式中,通过半空间格林函数将底层半空间的影响包括在内。然后使用离散偶极近似法求解体积积分方程。对于所有三个维度,都使用半空间格林函数而不是传统的自由空间格林函数来实现快速傅立叶变换。为了克服有限数值计算中的积雪量截断,在横向范围内应用了周期性边界条件。因此,在NMM3D中,无需使用任何辐射传递方程即可解决物理微波散射和发射问题。在此公式中,积雪的散射矩阵说明了幅度和相位。 NMM3D模拟以 Ku 频段的频率进行了演示,覆盖了25厘米厚的积雪。该结果适用于遥感海冰上的积雪和陆地积雪的薄层。对于有源微波遥感,得出背向散射和双基地散射系数的定量值,对于无源微波遥感,得出亮度温度。将全波模拟结果与密集介质辐射传输(DMRT)的部分相干方法的结果进行了比较。 NMM3D结果捕获了DMRT中缺少的反向散射增强和相干分层的效果。麦克斯韦方程的全波解对于提高雷达极化,干涉测量和层析成像技术非常重要,这些技术需要保留完整的相位信息和所有接口相互作用,以用于雷达遥感陆地和海冰上的积雪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号