首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Class-Oriented Spectral Partitioning for Remotely Sensed Hyperspectral Image Classification
【24h】

Class-Oriented Spectral Partitioning for Remotely Sensed Hyperspectral Image Classification

机译:面向类的光谱分割用于遥感高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Remotely sensed hyperspectral images exhibit very high dimensionality in the spectral domain. As opposed to band selection techniques, which extract a subset of the original spectral bands in the image, spectral partitioning (SP) techniques reassign the original bands into subgroups that are then processed separately. From a classification perspective, this strategy has the advantage that all the original information in the hyperspectral data can be retained while addressing the curse of dimensionality given by the Hughes phenomenon. Even if SP prior to classification has been widely used, the strategies adopted to perform such partitioning did not consider the diversity of spectral classes in the scene. In other words, available techniques are not driven by the information contained in the classes of interest, which can be very useful to perform the SP in a more effective manner for classification purposes. To address this issue, in this paper, we present a new class-oriented SP technique that exploits prior information about the classes by automatically ranking the spectral bands that are more useful for each specific class (instead of considering the hyperspectral image as a whole). The resulting multiple subgroups of bands with lower dimensionality are then fed to a multiple classifier system. Our experimental results, conducted with three different hyperspectral airborne images, suggest that the presented method leads to competitive results when compared to other state-of-the-art approaches in the field.
机译:遥感高光谱图像在光谱域中表现出很高的维数。与提取图像中原始光谱带的子集的频带选择技术相反,光谱划分(SP)技术将原始带重新分配为子组,然后分别进行处理。从分类的角度来看,该策略的优势在于,在解决休斯现象给定的维数诅咒的同时,可以保留高光谱数据中的所有原始信息。即使已广泛使用分类之前的SP,执行这种划分所采用的策略也没有考虑场景中光谱类别的多样性。换句话说,可用技术不受感兴趣类中包含的信息的驱动,这对于出于分类目的以更有效的方式执行SP可能非常有用。为了解决这个问题,在本文中,我们提出了一种新的面向类的SP技术,该技术通过自动排列对每个特定类更有用的光谱带来利用有关类的先验信息(而不是从整体上考虑高光谱图像) 。然后将所得的具有较低维数的频带的多个子组馈送到多重分类器系统。我们用三个不同的高光谱机载图像进行的实验结果表明,与该领域的其他最新方法相比,该方法可带来竞争性结果。

著录项

  • 来源
  • 作者单位

    Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications, Escuela Politécnica, University of Extremadura, Cáceres, Spain;

    School of Geography and Planning and Guangdong Key Laboratory for Urbanization and Geo-Simulation, Sun Yat-sen University, Guangzhou, China;

    Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, China;

    Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications, Escuela Politécnica, University of Extremadura, Cáceres, Spain;

    School of Engineering and Information Technology, University of New South Wales, Canberra, Australia;

    School of Geography and Planning and Guangdong Key Laboratory for Urbanization and Geo-Simulation, Sun Yat-sen University, Guangzhou, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hyperspectral imaging; Feature extraction; Imaging; Kernel; Training;

    机译:高光谱成像;特征提取;成像;核;训练;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号