机译:面向类的光谱分割用于遥感高光谱图像分类
Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications, Escuela Politécnica, University of Extremadura, Cáceres, Spain;
School of Geography and Planning and Guangdong Key Laboratory for Urbanization and Geo-Simulation, Sun Yat-sen University, Guangzhou, China;
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, China;
Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications, Escuela Politécnica, University of Extremadura, Cáceres, Spain;
School of Engineering and Information Technology, University of New South Wales, Canberra, Australia;
School of Geography and Planning and Guangdong Key Laboratory for Urbanization and Geo-Simulation, Sun Yat-sen University, Guangzhou, China;
Hyperspectral imaging; Feature extraction; Imaging; Kernel; Training;
机译:使用多GPU计算智能分类大型远程感测的高光谱图像
机译:主动度量学习用于遥感高光谱图像分类
机译:在对遥感高光谱图像进行监督分类之前进行分解
机译:基于多准则的光谱分割方法用于遥感高光谱图像分类
机译:超类:一种用于高光谱遥感数据的无监督分类方法。
机译:利用自组织图上的遥感高光谱数据对棉花轮虫的数量进行分类
机译:区域对象聚合远程感测到远程斑点图像的图像分割方法研究
机译:远程感知高光谱图像层次分割中结果的自动选择