首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Robust Capsule Network Based on Maximum Correntropy Criterion for Hyperspectral Image Classification
【24h】

Robust Capsule Network Based on Maximum Correntropy Criterion for Hyperspectral Image Classification

机译:基于最大正管图像分类的鲁棒胶囊网络

获取原文
获取原文并翻译 | 示例

摘要

Recently, deep learning-based algorithms have been widely used for classification of hyperspectral images (HSIs) by extracting invariant and abstract features. In our conference paper presented at IEEE International Geoscience and Remote Sensing Symposium 2018, 1-D-capsule network (CapsNet) and 2-D-CapsNet were proposed and validated for HSI feature extraction and classification. To further improve the classification performance, the robust 3-D-CapsNet architecture is proposed in this article by following our previous work, which introduces the maximum correntropy criterion to address the noise and outliers problem, generating a robust and better generalization model. As such, discriminative features can be extracted even if some samples are corrupted more or less. In addition, a novel dual channel framework based on robust CapsNet is further proposed to fuse the hyperspectral data and light detection and ranging-derived elevation data for classification. Three widely used hyperspectral datasets are employed to demonstrate the superiority of our proposed deep learning models.
机译:最近,基于深度学习的算法已广泛用于通过提取不变和抽象特征来分类高光谱图像(HSIS)。在我们的会议上,在IEEE国际地球科学和遥感研讨会上提出的2018年,提出了1-D-CAPSELE网络(CAPSNET)和2-D-CAPSNET,并验证了HSI功能提取和分类。为了进一步提高分类性能,通过遵循我们以前的工作,在本文中提出了强大的3-D-CapsNet架构,这引入了解决噪声和异常值问题的最大校正标准,产生了强大和更好的泛化模型。因此,即使一些样品损坏或多或少地损坏,也可以提取辨别特征。另外,进一步提出了一种基于强大的帽子的新型双信道框架,以熔化高光谱数据和光检测和测距衍生的升降数据进行分类。使用三个广泛使用的高光谱数据集来展示我们提出的深度学习模型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号