首页> 外文期刊>Selecta Mathematica, New Series >q-Distributions on boxed plane partitions
【24h】

q-Distributions on boxed plane partitions

机译:盒装平面分区上的q分布

获取原文

摘要

We introduce elliptic weights of boxed plane partitions and prove that they give rise to a generalization of MacMahon’s product formula for the number of plane partitions in a box. We then focus on the most general positive degenerations of these weights that are related to orthogonal polynomials; they form three 2-D families. For distributions from these families, we prove two types of results. First, we construct explicit Markov chains that preserve these distributions. In particular, this leads to a relatively simple exact sampling algorithm. Second, we consider a limit when all dimensions of the box grow and plane partitions become large and prove that the local correlations converge to those of ergodic translation invariant Gibbs measures. For fixed proportions of the box, the slopes of the limiting Gibbs measures (that can also be viewed as slopes of tangent planes to the hypothetical limit shape) are encoded by a single quadratic polynomial.
机译:我们介绍了盒装平面隔板的椭圆权重,并证明它们引起了MacMahon的产品公式对盒中平面隔板数量的推广。然后,我们关注与正交多项式有关的这些权重的最一般的正退化。他们形成了三个二维家庭。对于这些族的分布,我们证明了两种结果。首先,我们构造保留这些分布的显式马尔可夫链。特别地,这导致相对简单的精确采样算法。其次,当盒子的所有维度都增长并且平面分区变大时,我们考虑一个极限,并证明局部相关收敛于遍历平移不变Gibbs测度。对于固定比例的盒子,限制吉布斯量度的斜率(也可以看作是切线平面到假设极限形状的斜率)由单个二次多项式编码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号