首页> 外文期刊>Security and communication networks >Palmprint authentication using fusion of wavelet and contourlet features
【24h】

Palmprint authentication using fusion of wavelet and contourlet features

机译:融合小波和轮廓波特征的掌纹认证

获取原文
获取原文并翻译 | 示例

摘要

Low resolution palmprint images consist of discriminative multisized and multidirectional principal lines and wrinkles. Intuitively, discrete wavelet transform (DWT) is a good choice to extract such patterns due to its space-frequency localization, multiresolution analysis (MRA) capability, and computational efficiency. However, most of the DWT-based palmprint recognition systems fail to report low equal error rate (EER) due to inherent limitations of DWT and shift-rotational variations in the intraclass palmprint images. This paper proposes the techniques for shift and rotation invariant feature extraction using DWT extension. The effectiveness of these techniques is tested on deliberately shifted and rotated palmprints. Further, limited directionality due to DWT is overcome by augmenting with features of contourlet transform. Contourlet transform can extract curve singularities effectively with multidirectional decomposition capability; wavelets are good in extracting point singularities. The different views of contourlet transform and DWT on palmprints motivate us to extract contourlet and wavelet features, and examine them for their individual and combined verification performances. The combined mode is found to perform well over their individual performances. The average EER (0.41 %), obtained on PolyU-Online-Palmprint Database-Ⅱ (PolyU), is better than the existing wavelets/transform-based palmprint recognition approaches and comparable to the other state of the art palmprint recognition approaches. The computational burden on feature extraction and matching is substantially low thereby making the approach suitable for resource constrained environments. Copyright © 2010 John Wiley & Sons, Ltd.
机译:低分辨率掌纹图像由可区分的多尺寸和多方向主线和皱纹组成。直观地,由于其空间频率局部化,多分辨率分析(MRA)能力和计算效率,离散小波变换(DWT)是提取此类模式的好选择。但是,由于DWT的固有局限性和类内掌纹图像中的移位-旋转变化,大多数基于DWT的掌纹识别系统无法报告较低的均等错误率(EER)。本文提出了使用DWT扩展的位移和旋转不变特征提取技术。在故意移动和旋转的掌纹上测试了这些技术的有效性。此外,通过增强轮廓波变换的特征可以克服由于DWT导致的有限方向性。 Contourlet变换具有多方向分解能力,可以有效地提取曲线奇点;小波擅长提取点奇点。在掌形图上轮廓波变换和DWT的不同观点促使我们提取轮廓波和小波特征,并检查它们的单独和组合验证性能。发现组合模式在其个人表现上表现良好。在PolyU-在线掌纹数据库Ⅱ(PolyU)上获得的平均EER(0.41%)优于现有的基于小波/变换的掌纹识别方法,并且与其他现有的掌纹识别方法相当。特征提取和匹配的计算负担非常低,从而使该方法适用于资源受限的环境。版权所有©2010 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号