首页> 外文期刊>Security and communication networks >Static detection of logic vulnerabilities in Java web applications
【24h】

Static detection of logic vulnerabilities in Java web applications

机译:静态检测Java Web应用程序中的逻辑漏洞

获取原文
获取原文并翻译 | 示例

摘要

This paper concerns about logic vulnerabilities that result from faulty logic of a web application. Logic vulnerabilities typically accompany with the exposure of unexpected functionalities and lead to the bypass of the intended constraints. From a semantic perspective, logic vulnerabilities occur when mistakes arise in the control flows guarding the processes of invoking critical functionalities. In this paper, we propose the first lightweight static analysis approach to automatically detect logic vulnerabilities in Java web applications. Logic errors in our approach are characterized as erroneous invocations of functionalities. Program-slicing technique has been leveraged to capture the processes of invoking critical functionalities. A back-tracing algorithm is originally designed to extract control flows guarding functionality-invocation processes. Finally, logic vulnerability detection is transformed into mining abnormal functionality-invocation processes in a cluster of similar ones by comparing these processes' control flows. We implemented our approach in a prototype tool named logic vulnerability detector and evaluated it on seven real-world applications scaled from thousands to million lines of code. The evaluation results show that our approach achieves bigger coverage with acceptable cost and better scalability than previous approaches. Copyright © 2013 John Wiley & Sons, Ltd.
机译:本文关注由Web应用程序的错误逻辑引起的逻辑漏洞。逻辑漏洞通常伴随着意外功能的出现,并导致绕过了预期的约束。从语义的角度来看,当控制流中出现错误并保护关键功能的过程时,就会发生逻辑漏洞。在本文中,我们提出了第一个轻量级的静态分析方法来自动检测Java Web应用程序中的逻辑漏洞。我们的方法中的逻辑错误的特征是对功能的错误调用。程序切片技术已被用来捕获调用关键功能的过程。回溯算法最初旨在提取保护功能调用过程的控制流。最后,通过比较这些过程的控制流,将逻辑漏洞检测转换为挖掘相似功能的集群中的异常功能调用过程。我们在名为逻辑漏洞检测器的原型工具中实施了该方法,并在从数千行代码扩展到数百万行代码的七个实际应用程序中对其进行了评估。评估结果表明,与以前的方法相比,我们的方法以可接受的成本和更好的可伸缩性实现了更大的覆盖范围。版权所有©2013 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号