首页> 外文期刊>Security and Communications Networks >A novel privacy-preserving scheme for collaborative frequent itemset mining across vertically partitioned data
【24h】

A novel privacy-preserving scheme for collaborative frequent itemset mining across vertically partitioned data

机译:一种新颖的隐私保护方案,用于跨垂直分区数据的协作频繁项集挖掘

获取原文
获取原文并翻译 | 示例

摘要

Privacy preservation while undertaking collaborative data mining is a significant research problem. The vertically partitioned data model is an important data partition model and has varied applications. The vertically partitioned data model necessitates a non-collusive scheme and an efficient scheme for the problem of privacy-preserving distributed frequent itemset mining (PPDFIM). The current literature has schemes based on secure sum, set intersection cardinality and secure binary dot product (SBDP) for PPDFIM across vertically partitioned data. [m,m] Shamir's additive secret sharing has been proposed as a non-collusive scheme for PPDFIM in a vertically partitioned setup that uses the secure sum sub-protocol. However, such a scheme leads to information leakage in the distributed frequent itemset mining scenario and defeats the purpose of privacy preservation. We give a critique on the non-collusive secret sharing-based approaches when used for privacy preservation in frequent itemset mining in a vertically partitioned model. Further, we propose Du-Atallah's efficient multiplication protocol for SBDP of two vectors for PPDFIM. We also propose an extension of the non-collusive Du-Atallah's SBDP protocol for a vertically partitioned setup to mine frequent itemsets for a multi-party multi-vector scenario. We show how such a collusion-resistant scheme does not lead to loss of privacy and give the theoretical and empirical analysis therein. Further, we show that our proposed scheme is more efficient than the seminal public key-based scheme proposed by Vaidya et al. in terms of the execution cost for a multi-party scenario. Copyright (C) 2015 John Wiley & Sons, Ltd.
机译:进行协作数据挖掘时的隐私保护是一个重要的研究问题。垂直分区的数据模型是重要的数据分区模型,具有多种应用。对于保留隐私的分布式频繁项集挖掘(PPDFIM)的问题,垂直划分的数据模型需要一种非冲突性方案和一种有效方案。当前的文献中有针对垂直分割的数据的PPDFIM基于安全总和,设置相交基数和安全二进制点积(SBDP)的方案。 [m,m]对于使用安全和子协议的垂直分区设置中的PPDFIM,已经提出了Shamir的附加秘密共享作为PPDFIM的非冲突方案。但是,这种方案在分布式频繁项集挖掘场景中导致信息泄漏,并且破坏了隐私保护的目的。当在垂直分区模型的频繁项集挖掘中用于隐私保护时,我们对基于非共谋秘密共享的方法提出了批评。此外,我们针对PPDFIM的两个向量为SBDP提出了Du-Atallah的高效乘法协议。我们还提议对非冲突式Du-Atallah的SBDP协议进行扩展,以实现垂直分区的设置,以挖掘多方多向量方案的频繁项集。我们展示了这种抗串通方案如何不会导致隐私损失,并在其中进行了理论和经验分析。此外,我们证明了我们提出的方案比Vaidya等人提出的基于基于公开密钥的方案更为有效。在多方方案的执行成本方面。版权所有(C)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号