首页> 外文期刊>Security and Communications Networks >Image-splicing forgery detection based on local binary patterns of DCT coefficients
【24h】

Image-splicing forgery detection based on local binary patterns of DCT coefficients

机译:基于DCT系数局部二进制模式的图像拼接伪造检测

获取原文
获取原文并翻译 | 示例

摘要

The wide use of high-performance image acquisition devices and powerful image-processing software has made it easy to tamper images for malicious purposes. Image splicing, which has constituted a menace to integrity and authenticity of images, is a very common and simple trick in image tampering. Therefore, image-splicing detection is of great importance in digital forensics. In this paper, an effective framework for revealing image-splicing forgery is proposed. First, the local binary pattern operator is used to model magnitude components of two-dimensional arrays obtained by applying multisize block discrete cosine transform to test images. Then, all of bins of histograms computed from local binary pattern codes are served as discriminative features for image-splicing detection. After that, kernel principal component analysis is utilized to reduce the dimensionality of the proposed features to avoid the high computational complexity, high mutual correlation among the constructed features and possible overfitting for support vector machine classifier. Finally, support vector machine classifier is employed to distinguish spliced images from authentic images by using the final dimensionality-reduced feature set. The experiment results show that the proposed method can perform better than some state-of-the-art methods in terms of the detection performance over the Columbia image-splicing detection evaluation dataset. Copyright (c) 2013 John Wiley & Sons, Ltd.
机译:高性能图像采集设备和功能强大的图像处理软件的广泛使用,使其易于为恶意目的篡改图像。图像拼接构成了图像完整性和真实性的威胁,是图像篡改中非常普遍且简单的技巧。因此,图像拼接检测在数字取证中非常重要。本文提出了一种有效的揭示图像拼接伪造的框架。首先,使用本地二进制模式算子对通过将多尺寸块离散余弦变换应用于测试图像而获得的二维阵列的幅度分量进行建模。然后,将从本地二进制模式代码计算出的所有直方图块用作判别特征,以进行图像拼接检测。之后,利用内核主成分分析来减少所提出特征的维数,以避免计算复杂度高,所构建特征之间的相互关系高以及支持向量机分类器可能过度拟合。最后,通过使用最终的降维特征集,采用支持向量机分类器将拼接图像与真实图像区分开。实验结果表明,在哥伦比亚图像拼接检测评估数据集上的检测性能方面,该方法的性能优于某些最新方法。版权所有(c)2013 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号