首页> 外文期刊>Security and Communications Networks >An ensemble method for detecting shilling attacks based on ordered item sequences
【24h】

An ensemble method for detecting shilling attacks based on ordered item sequences

机译:一种基于有序项目序列的先令攻击检测方法

获取原文
获取原文并翻译 | 示例

摘要

Collaborative filtering systems are vulnerable to shilling attacks in which malicious users bias the systems' recommendation output by inserting fake profiles. While many approaches have been proposed to detect shilling attacks, they suffer from low precision. To solve this problem, an ensemble method for detecting shilling attacks based on ordered item sequences is proposed. Firstly, by analyzing the differences of rating patterns between genuine and attack profiles, we construct ordered popular item sequences and ordered novelty item sequences, and based on which, the popular and novelty item rating series are constructed for each user profile. Secondly, we propose six features to characterize the attack profiles. Particularly, we extract two features based on the popular and novelty item rating series. We partition the item set according to the ordered item sequences and combine them with mutual information to extract another four features. Finally, we propose an ensemble framework to detect shilling attacks. In particular, we create base training sets with great diversities using bootstrap resampling technique. Based on these base training sets, we train decision tree algorithm to generate diverse base classifiers. The simple majority voting strategy is used to combine the predictive results of these base classifiers. Experimental results indicate that ensemble method for detecting shilling attacks based on ordered item sequences can significantly improve the precision while maintaining a high recall. Copyright (c) 2015 John Wiley & Sons, Ltd.
机译:协作过滤系统很容易遭受先令攻击,在这种攻击中,恶意用户会通过插入伪造的配置文件来偏向系统的建议输出。尽管已经提出了许多检测先令攻击的方法,但它们的精度较低。为了解决这个问题,提出了一种基于有序项序列的先验攻击检测方法。首先,通过分析真实配置文件和攻击配置文件之间的评分模式差异,我们构建了有序的流行项目序列和有序的新颖项目序列,并在此基础上为每个用户配置文件构建了流行性和新颖性项目评级系列。其次,我们提出了六个特征来描述攻击特征。特别是,我们根据受欢迎程度和新颖性项目评分系列提取了两个特征。我们根据排序的项目序列对项目集进行划分,并将它们与相互信息结合起来以提取另外四个特征。最后,我们提出了一个整体框架来检测先令攻击。特别是,我们使用自举重采样技术创建了差异很大的基础训练集。基于这些基础训练集,我们训练决策树算法以生成各种基础分类器。简单多数投票策略用于组合这些基本分类器的预测结果。实验结果表明,基于有序项目序列的先验攻击检测方法可以在保持较高召回率的同时,显着提高精度。版权所有(c)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号