首页> 外文期刊>Scientific programming >Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms
【24h】

Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms

机译:使用遗传算法调度具有截止日期和预算约束的科学工作流程应用

获取原文
获取原文并翻译 | 示例

摘要

Grid technologies have progressed towards a service-oriented paradigm that enables a new way of service provisioning based on utility computing models, which are capable of supporting diverse computing services. It facilitates scientific applications to take advantage of computing resources distributed world wide to enhance the capability and performance. Many scientific applications in areas such as bioinformatics and astronomy require workflow processing in which tasks are executed based on their control or data dependencies. Scheduling such interdependent tasks on utility Grid environments need to consider users' QoS requirements. In this paper, we present a genetic algorithm approach to address scheduling optimization problems in workflow applications, based on two QoS constraints, deadline and budget.
机译:网格技术已朝着面向服务的范式发展,该范式允许基于实用计算模型的服务提供新方法,该模型能够支持各种计算服务。它有助于科学应用程序利用分布在全球的计算资源来增强功能和性能。在生物信息学和天文学等领域中的许多科学应用程序都需要工作流处理,其中基于任务的控制或数据依赖性来执行任务。在公用电网环境中安排此类相互依赖的任务需要考虑用户的QoS要求。在本文中,我们基于两种服务质量约束(期限和预算),提出了一种遗传算法方法来解决工作流应用程序中的调度优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号