首页> 外文期刊>Scientific programming >Inferring neuronal network connectivity from spike data: A temporal data mining approach
【24h】

Inferring neuronal network connectivity from spike data: A temporal data mining approach

机译:从峰值数据推断神经元网络连接:一种时态数据挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neu-roscience. Recent developments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.
机译:了解神经系统的基础电路功能是神经科学中的一个重要问题。电生理学和影像学的最新发展使人们可以同时记录数百个神经元的活动。从这样的多神经突峰训练数据流中推断潜在的神经元连通性模式是一个具有挑战性的统计和计算问题。该任务涉及从大量符号时间序列数据中找到重要的时间模式。在本文中,我们证明了在这种情况下,时态数据挖掘领域的频繁事件挖掘方法可能非常有用。在频繁情节发现框架中,数据被视为一系列事件,每个事件的特征在于事件类型及其发生时间,而情节是此类数据中某些类型的时间模式。在这里,我们表明,使用从多神经元数据中发现的频繁事件集,可以推断出生成神经网络的神经系统的不同类型的连通性。为此,我们引入了在某些时间限制下频繁发作的挖掘概念。这些时间约束的结构是由应用程序驱动的。我们提出了在这些时间约束下发现连续和并行情节的算法。通过广泛的模拟研究,我们证明了这些方法对于挖掘神经网络连通性的模式很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号